Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sciencearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Science
Article
Data sources: UnpayWall
Science
Article . 2010 . Peer-reviewed
Data sources: Crossref
Science
Article . 2010
versions View all 2 versions

Tetrathiomolybdate Inhibits Copper Trafficking Proteins Through Metal Cluster Formation

Authors: Mónica A. Canalizo-Hernández; Chandler D. Robinson; Alfonso Mondragón; Yi Xue; Hamsell M. Alvarez; Rebecca G. Marvin; Thomas V. O'Halloran; +2 Authors

Tetrathiomolybdate Inhibits Copper Trafficking Proteins Through Metal Cluster Formation

Abstract

Targeting Copper Clusters Tetrathiomolybdate (TM) is a copper-depleting agent that has potential in treating copper-dependent diseases. Alvarez et al. (p. 331 , published online 26 November) used spectroscopic and structural studies to show that TM inhibits the yeast copper chaperone Atx1 by forming a TM-Cu-ATx1 complex that is stabilized by a sulfur-bridged copper-molybdenum cluster. Cluster formation prevents transfer of copper from the chaperone to target enzymes. The results provide a basis for developing drugs that target metallation pathways.

Keywords

Models, Molecular, Molybdenum, Saccharomyces cerevisiae Proteins, Chemical Phenomena, Molecular Structure, Protein Conformation, Crystallography, X-Ray, Ligands, Metallochaperones, Copper Transport Proteins, Models, Chemical, Carrier Proteins, Cation Transport Proteins, Oxidation-Reduction, Copper

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    170
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
170
Top 1%
Top 10%
Top 1%
bronze