Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sciencearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Science
Article
Data sources: UnpayWall
Science
Article . 2009 . Peer-reviewed
Data sources: Crossref
Science
Article . 2009
Science
Article . 2009
Data sources: u:cris
versions View all 5 versions

Genome-Wide RNAi Screen Identifies Genes Involved in Intestinal Pathogenic Bacterial Infection

Authors: Cronin SJ; Nehme NT; Limmer S; Liegeois S; Pospisilik JA; Schramek D; Leibbrandt A; +9 Authors

Genome-Wide RNAi Screen Identifies Genes Involved in Intestinal Pathogenic Bacterial Infection

Abstract

Innate Immunity in the Fly Gut Drosophila melanogaster is an important model system to study innate immunity, being both easy to manipulate and lacking an adaptive immune system. In order to identify genes that regulate innate immunity, Cronin et al. (p. 340 ; published online 11 June) performed an RNA interference screen on flies infected with the oral bacterial pathogen, Serratia marcescens . Genes involved in intestinal immunity and regulation of hemocytes, macrophage-like cells critical for phagocytosis and killing of the bacteria, were identified. Several hundred genes conferred either enhanced susceptibility or resistance to bacterial infection. Furthermore, the JAK/STAT signaling pathway was activated in intestinal stem cells after bacterial infection, resulting in enhanced susceptibility to infection, most likely through regulation of intestinal stem cell homeostasis.

Keywords

Hemocytes, Stem Cells, Genome, Insect, Epithelial Cells, Immunity, Innate, Serratia Infections, Animals, Genetically Modified, STAT Transcription Factors, Drosophila melanogaster, 106005 Bioinformatik, Models, Animal, Animals, Drosophila Proteins, Homeostasis, RNA Interference, Intestinal Mucosa, 106005 Bioinformatics, Serratia marcescens, Cell Proliferation, Janus Kinases, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    288
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
288
Top 1%
Top 1%
Top 1%
bronze