Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Pharmacolo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Pharmacology
Article . 2009 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions

Activation of Retinoic Acid Receptors by Dihydroretinoids

Authors: Moise, Alexander R; Álvarez Rodríguez, Susana; Domínguez Seoane, Marta; Álvarez Rodríguez, Maria Rosana; Golczak, Marcin; Lobo, Glenn P; Lintig, Johannes von; +2 Authors

Activation of Retinoic Acid Receptors by Dihydroretinoids

Abstract

Vitamin A-derived metabolites act as ligands for nuclear receptors controlling the expression of a number of genes. Stereospecific saturation of the C(13)-C(14) double bond of all-trans-retinol by the enzyme, retinol saturase (RetSat), leads to the production of (R)-all-trans-13,14-dihydroretinol. In liver and adipose tissue, expression of RetSat is controlled by peroxisome proliferator-activated receptors (PPAR) alpha and gamma, respectively. Expression of RetSat in adipose tissue is also required for PPARgamma activation and adipocyte differentiation, but the involved mechanism is poorly understood. In this study, we examined the potential of (R)-all-trans-13,14-dihydroretinol and its metabolites to control gene transcription via nuclear receptors. Using a cell-based transactivation assay to screen 25 human nuclear receptors for activation, we found that dihydroretinoids have a narrow transcriptional profile limited primarily to activation of retinoic acid receptors (RARs). Although (R)-all-trans-13,14-dihydroretinoic acid exhibited comparable potency to retinoic acid in promoting the interaction of RARs with a coactivator peptide in vitro, its potency in activating RAR-controlled genes in cell-based assays was much lower than that of retinoic acid. As an explanation for the weak RAR agonist activity of dihydroretinoids in cell-based assays, we propose that both delivery of ligand to the nucleus and RAR activation favor retinoic acid over dihydroretinoids. Discrimination between the cognate ligand, retinoic acid, and close analogs such as dihydroretinoids, occurs at multiple levels and may represent a mechanism to modulate retinoid-dependent physiological processes.

Related Organizations
Keywords

Transcriptional Activation, Spectrometry, Fluorescence, 24 Ciencias de la Vida, Receptors, Retinoic Acid, Humans, Tretinoin, Retinol-Binding Proteins, Plasma, Cell Line

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    43
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
43
Top 10%
Top 10%
Top 10%
bronze