Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Molecular Pharmacolo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Pharmacology
Article . 2006 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Phospholipase C-β3 and -β1 Form Homodimers, but Not Heterodimers, through Catalytic and Carboxyl-Terminal Domains

Authors: Jeffrey A. Greenwood; Theresa M. Filtz; Yong Zhang; Jennifer S. McCullar; Walter K. Vogel;

Phospholipase C-β3 and -β1 Form Homodimers, but Not Heterodimers, through Catalytic and Carboxyl-Terminal Domains

Abstract

Phospholipase C-beta (PLC-beta) isoenzymes are key effectors in G protein-coupled signaling pathways. Prior research suggests that some isoforms of PLC-beta may exist and function as dimers. Using coimmunoprecipitation assays of differentially tagged PLC-beta constructs and size-exclusion chromatography of native PLC-beta, we observed homodimerization of PLC-beta3 and PLC-beta1 isoenzymes but failed to detect heterodimerization of these isoenzymes. Size-exclusion chromatography data suggest that PLC-beta3 and PLC-beta1 form higher affinity homodimers than PLC-beta2. Evidence supportive of limited PLC-beta monomer-homodimer equilibrium appears at < or =100 nM. Further assessment of homodimerization status by coimmunoprecipitation assays with differentially tagged PLC-beta3 fragments demonstrated that at least two subdomains of PLC-beta3 are involved in dimer formation, one in the catalytic X and Y domains and the other in the G protein-regulated carboxyl-terminal domain. In addition, we provide evidence consistent with the existence of PLC-beta homodimers in a whole-cell context, using fluorescent protein-tagged constructs and microscopic fluorescence resonance energy transfer assays.

Related Organizations
Keywords

Recombinant Fusion Proteins, Phospholipase C beta, Protein Structure, Tertiary, Rats, Isoenzymes, Catalytic Domain, Type C Phospholipases, Chromatography, Gel, Fluorescence Resonance Energy Transfer, Animals, Humans, Immunoprecipitation, Dimerization, Cells, Cultured

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Average
Average
Top 10%