<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Tissue Distribution, Ontogeny, and Hormonal Regulation of Xenobiotic Transporters in Mouse Kidneys
Tissue Distribution, Ontogeny, and Hormonal Regulation of Xenobiotic Transporters in Mouse Kidneys
Kidneys play important roles in the elimination of numerous endogenous and exogenous chemicals. In recent years, at least 37 xenobiotic transporters have been identified in mammalian kidneys. Although much progress has been made, information on 14 of these transporters (ATP-binding cassette [Abc] a1, apical sodium bile acid transporter [Asbt], breast cancer resistance protein, concentrative nucleoside transporter 1, equilibrative nucleoside transporter [Ent] 2, Ent3, sodium-phosphate cotransporter [Npt] 1, Npt2a, Npt2b, Npt2c, organic anion transporter [Oat] 5, organic anion-transporting polypeptide [Oatp] 4c1, peptide transporter 2, and uric acid transporter [Urat] 1) in kidneys is quite limited. Therefore, the purpose of the present study was to examine the tissue distribution, ontogeny, and hormonal regulation of these 14 transporters in kidneys of mice. Other than in kidneys, Npt2b is also highly expressed in liver and lung, Npt2c in liver and colon, Asbt in ileum, and Abca1 in liver, lung, testis, ovary, and placenta of mice. Most of these (13 of 14) transporters are lowly expressed in mouse kidneys until 15 days of age, which in part contributes to the immaturity of excretory function in fetal and newborn kidneys. One exception is Ent2, which is highly expressed before birth and gradually decreases after birth until reaching adult levels at 15 days of age. Gender-divergent expression of male-predominant (Urat1 and Oatp4c1) and female-predominant (Oat5) transporters in mouse kidneys is primarily due to stimulatory effects of androgens and estrogens, respectively. In conclusion, the mRNA expression of xenobiotic transporters in kidneys is determined by tissue, age, and sex hormones.
- University of Kansas Hospital United States
- Q Therapeutics (United States) United States
- University of Kansas United States
- University of Kansas Medical Center United States
Male, Base Sequence, Organic Cation Transport Proteins, Molecular Sequence Data, Age Factors, Membrane Transport Proteins, Organic Anion Transporters, Kidney, Rats, Xenobiotics, Mice, Inbred C57BL, Mice, Animals, Female, Tissue Distribution, RNA, Messenger, Gonadal Steroid Hormones
Male, Base Sequence, Organic Cation Transport Proteins, Molecular Sequence Data, Age Factors, Membrane Transport Proteins, Organic Anion Transporters, Kidney, Rats, Xenobiotics, Mice, Inbred C57BL, Mice, Animals, Female, Tissue Distribution, RNA, Messenger, Gonadal Steroid Hormones
48 Research products, page 1 of 5
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).72 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
