Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Physi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Journal of Physiology
Article . 2008 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

Hypoxic preconditioning protects rat hearts against ischaemia–reperfusion injury: role of erythropoietin on progenitor cell mobilization

Authors: Jih-Shyong, Lin; Yih-Sharng, Chen; Han-Sun, Chiang; Ming-Chieh, Ma;

Hypoxic preconditioning protects rat hearts against ischaemia–reperfusion injury: role of erythropoietin on progenitor cell mobilization

Abstract

Preconditioning, such as by brief hypoxic exposure, has been shown to protect hearts against severe ischaemia. Here we hypothesized that hypoxic preconditioning (HPC) protects injured hearts by mobilizing the circulating progenitor cells. Ischaemia–reperfusion (IR) injury was induced by left coronary ligation and release in rats kept in room air or preconditioned with 10% oxygen for 6 weeks. To study the role of erythropoietin (EPO), another HPC + IR group was given an EPO receptor (EPOR) antibody via a subcutaneous mini‐osmotic pump 3 weeks before IR induction. HPC alone gradually increased haematocrit, cardiac and plasma EPO, and cardiac vascular endothelial growth factor (VEGF) only in the first two weeks. HPC improved heart contractility, reduced ischaemic injury, and maintained EPO and EPOR levels in the infarct tissues of IR hearts, but had no significant effect on VEGF. Interestingly, the number of CD34+CXCR4+ cells in the peripheral blood and their expression in HPC‐treated hearts was higher than in control. Preconditioning up‐regulated cardiac expression of stromal derived factor‐1 (SDF‐1) and prevented its IR‐induced reduction. The EPOR antibody abolished HPC‐mediated functional recovery, and reduced SDF‐1, CXCR4 and CD34 expression in IR hearts, as well as the number of CD34+CXCR4+ cells in blood. The specificity of neutralizing antibody was confirmed in an H9c2 culture system. In conclusion, exposure of rats to moderate hypoxia leads to an increase in progenitor cells in the heart and circulation. This effect is dependent on EPO, which induces cell homing by increased SDF‐1/CXCR4 and reduces the heart susceptibly to IR injury.

Keywords

Male, Receptors, CXCR4, Reverse Transcriptase Polymerase Chain Reaction, Myocardium, Gene Expression, Antigens, CD34, Heart, Models, Biological, Antibodies, Chemokine CXCL12, Rats, Reperfusion Injury, Ischemic Preconditioning, Myocardial, Receptors, Erythropoietin, Animals, Creatine Kinase, MB Form, Myocytes, Cardiac, Rats, Wistar, Hypoxia, Erythropoietin

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    60
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
60
Top 10%
Top 10%
Top 10%
bronze