Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Experimental Physiol...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Experimental Physiology
Article . 2020 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Intermittent low dose carbon monoxide inhalation does not influence glucose regulation in overweight adults: a randomized controlled crossover trial

Authors: J. A. Goodrich; D. J. Frisco; S. P. P. Ryan; A. A. Newman; S. R. J. Trikha; B. Braun; C. Bell; +1 Authors

Intermittent low dose carbon monoxide inhalation does not influence glucose regulation in overweight adults: a randomized controlled crossover trial

Abstract

New Findings What is the central question of this study? Low dose carbon monoxide (CO) inhalation plays a role in regulating proteins involved in glucose metabolism; does low dose CO improve glucose and insulin responses to an oral glucose tolerance test in overweight adults? What is the main finding and its importance? Five days of intermittent CO inhalation does not alter the glucose or insulin responses to ingestion of a glucose bolus in overweight adults. Low dose CO is utilized in various physiological assessment procedures; these findings allow researchers and clinicians to utilize these procedures without concern of altering glucose metabolism. AbstractLow dose carbon monoxide (CO) inhalation upregulates several proteins important for glucose metabolism. Such changes could be clinically significant and may be relevant to those who use CO as a research tool. We hypothesized that low dose CO inhalation would improve glucose and insulin responses to an oral glucose bolus in overweight humans. Eleven young adults (5 men, 6 women; body mass index: 25–35 kg m−2) were included in this randomized, placebo‐controlled, single‐blinded crossover study. Following screening, participants completed two 7‐day protocols with a 4‐week washout. Twenty‐four hours prior to and following five consecutive days of either once daily CO (men: 1.2 ml (kg body mass)−1; women: 1.0 ml (kg body mass)−1) or placebo (room air) inhalation, participants underwent oral glucose tolerance tests (OGTT). For key outcome variables, there were no significant main effects or interactions across condition or time point (mean ± SD), including fasting glucose (mg dl−1: pre‐placebo: 85.2 ± 10.1; post‐placebo: 82.9 ± 10.6; pre‐CO: 83.6 ± 7.7; post‐CO: 84.0 ± 9.0), 2 h post glucose (mg dl−1: pre‐placebo: 100.9 ± 20.0; post‐placebo: 98.7 ± 13.1; pre‐CO: 94.2 ± 23.2; post‐CO: 94.4 ± 14.9), or the Matsuda index (pre‐placebo: 16.1 ± 11.5; post‐placebo: 20.3 ± 24.7; pre‐CO: 15.6 ± 15.3; post‐CO: 17.5 ± 16.8). In conclusion, 5 days of low dose CO administration did not influence glucose and insulin responses to an OGTT in overweight adults. Low dose CO inhalation is utilized in a variety of physiological assessment procedures; these findings allow researchers to utilize these procedures without concern of altering glucose metabolism.

Related Organizations
Keywords

Adult, Blood Glucose, Male, Carbon Monoxide, Cross-Over Studies, Fasting, Glucose Tolerance Test, Overweight, Body Mass Index, Young Adult, Glucose, Humans, Insulin, Female, Single-Blind Method, Insulin Resistance

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold