Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Plant Cell & Environ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Plant Cell & Environment
Article . 2012 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

Unravelling mitochondrial retrograde regulation in the abiotic stress induction of rice ALTERNATIVE OXIDASE 1 genes

Authors: Chun-Rong, Li; Dan-Dan, Liang; Juan, Li; Yong-Bo, Duan; Hao, Li; Ya-Chun, Yang; Rui-Ying, Qin; +3 Authors

Unravelling mitochondrial retrograde regulation in the abiotic stress induction of rice ALTERNATIVE OXIDASE 1 genes

Abstract

ABSTRACTMitochondrial retrograde regulation (MRR) is the transduction of mitochondrial signals to mediate nuclear gene expression. It is not clear whether MRR is a common regulation mechanism in plant abiotic stress response. In this study, we analysed the early abiotic stress response of the rice OsAOX1 genes, and the induction of OsAOX1a and OsAOX1b (OsAOX1a/b) was selected as a working model for the stress‐induced MRR studies. We found that the induction mediated by the superoxide ion (O2·‐)‐generating chemical methyl viologen was stronger than that of hydrogen peroxide (H2O2). The addition of reactive oxygen species (ROS) scavengers demonstrated that the stress induction was reduced by eliminating O2·‐. Furthermore, the stress induction did not rely on chloroplast‐ or cytosol‐derived O2·‐. Next, we generated transgenic plants overexpressing the superoxide dismutase (SOD) gene at different subcellular locations. The results suggest that only the mitochondrial SOD, OsMSD, attenuated the stress induction of OsAOX1a/b specifically. Therefore, our findings demonstrate that abiotic stress initiates the MRR on OsAOX1a/b and that mitochondrial O2·– is involved in the process.

Related Organizations
Keywords

Paraquat, Salinity, Gene Expression, Mitochondrial Proteins, Gene Expression Regulation, Plant, Plant Proteins, Cell Nucleus, Oryza, Free Radical Scavengers, Hydrogen Peroxide, Plants, Genetically Modified, Droughts, Mitochondria, Cold Temperature, Oxidative Stress, Seedlings, Calcium, Oxidoreductases, Reactive Oxygen Species, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    71
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
71
Top 10%
Top 10%
Top 10%