Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Thrombosi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Thrombosis and Haemostasis
Article . 2017 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 2 versions

Dysregulation of PLDN (pallidin) is a mechanism for platelet dense granule deficiency in RUNX1 haplodeficiency

Authors: G F, Mao; L E, Goldfinger; D C, Fan; M P, Lambert; G, Jalagadugula; R, Freishtat; A K, Rao;

Dysregulation of PLDN (pallidin) is a mechanism for platelet dense granule deficiency in RUNX1 haplodeficiency

Abstract

Essentials Platelet dense granule (DG) deficiency is a major abnormality in RUNX1 haplodeficiency patients. The molecular mechanisms leading to the platelet DG deficiency are unknown. Platelet expression of PLDN (BLOC1S6, pallidin), involved in DG biogenesis, is regulated by RUNX1. Downregulation of PLDN is a mechanism for DG deficiency in RUNX1 haplodeficiency.Background Inherited RUNX1 haplodeficiency is associated with thrombocytopenia and platelet dysfunction. Dense granule (DG) deficiency has been reported in patients with RUNX1 haplodeficiency, but the molecular mechanisms are unknown. Platelet mRNA expression profiling in a patient previously reported by us with a RUNX1 mutation and platelet dysfunction showed decreased expression of PLDN (BLOC1S6), which encodes pallidin, a subunit of biogenesis of lysosome-related organelles complex-1 (BLOC-1) involved in DG biogenesis. PLDN mutations in the pallid mouse and Hermansky-Pudlak syndrome-9 are associated with platelet DG deficiency. Objectives We postulated that PLDN is a RUNX1 target, and that its decreased expression leads to platelet DG deficiency in RUNX1 haplodeficiency. Results Platelet pallidin and DG levels were decreased in our patient. This was also observed in two siblings from a different family with a RUNX1 mutation. Chromatin immunoprecipitation and electrophoretic mobility shift assays with phorbol ester-treated human erythroleukemia (HEL) cells showed RUNX1 binding to RUNX1 consensus sites in the PLDN1 5' upstream region. In luciferase reporter studies, mutation of RUNX1 sites in the PLDN promoter reduced activity. RUNX1 overexpression enhanced and RUNX1 downregulation decreased PLDN1 promoter activity and protein expression. RUNX1 downregulation resulted in impaired handling of mepacrine and mislocalization of the DG marker CD63 in HEL cells, indicating impaired DG formation, recapitulating findings on PLDN downregulation. Conclusions These studies provide the first evidence that PLDN is a direct target of RUNX1 and that its dysregulation is a mechanism for platelet DG deficiency associated with RUNX1 haplodeficiency.

Keywords

Blood Platelets, Male, Binding Sites, Down-Regulation, Haploinsufficiency, Cytoskeletal Proteins, Mice, Gene Expression Regulation, Hermanski-Pudlak Syndrome, Cell Line, Tumor, Child, Preschool, Lectins, Core Binding Factor Alpha 2 Subunit, Mutation, Animals, Humans, Female, Blood Platelet Disorders, Carrier Proteins, Child

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Top 10%
Average
Top 10%
bronze