Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Thrombosi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Thrombosis and Haemostasis
Article . 2015 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 2 versions

WEDGE: an anticoagulant thrombin mutant produced by autoactivation

Authors: Nicola Pozzi; Norah G. Verbout; E. Di Cera; David C. Wood; Andras Gruber; Erik I. Tucker; Michael Wallisch; +1 Authors

WEDGE: an anticoagulant thrombin mutant produced by autoactivation

Abstract

The production of therapeutically relevant proteases typically involves activation of a zymogen precursor by external enzymes, which may raise regulatory issues about availability and purity. Recent studies of thrombin precursors have shown how to engineer constructs that spontaneously convert to the mature protease by autoactivation, without the need for external enzymes.Autoactivation is an innovative strategy that promises to simplify the production of proteases of therapeutic relevance, but has not been tested in practical applications. The aim of this study was to provide a direct test of this strategy.An autoactivating version of the thrombin mutant W215A/E217A (WE), which is currently in preclinical development as an anticoagulant, was engineered.The autoactivating version of WE can be produced in large quantities, like WE made in BHK cells or Escherichia coli, and retains all significant functional properties in vitro and in vivo. The results serve as proof of principle that autoactivation is an innovative and effective strategy for the production of trypsin-like proteases of therapeutic relevance.

Related Organizations
Keywords

Thrombin, Anticoagulants, Protein Engineering, Catalysis, Recombinant Proteins, Enzyme Activation, Amino Acid Substitution, Injections, Intravenous, Mutation, Animals, Partial Thromboplastin Time, Prothrombin, Blood Coagulation, Papio

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average
bronze