Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Thrombosi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Thrombosis and Haemostasis
Article . 2008 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Thrombosis and Haemostasis
Article . 2008 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 3 versions

Expression of human tissue factor under the control of the mouse tissue factor promoter mediates normal hemostasis in knock-in mice

Authors: J. Yang; K. A. Rudnick; G. M. Anderson; A. Volk; L. A. Snyder; S. H. Tam; R. Tawadros; +1 Authors

Expression of human tissue factor under the control of the mouse tissue factor promoter mediates normal hemostasis in knock-in mice

Abstract

Tissue factor (TF) is expressed widely at the subluminal surface of blood vessels and serves as the primary cellular initiator of the extrinsic pathway of blood coagulation. Lack of TF in mice resulted in lethality in utero, but human TF (huTF) expressed at low levels from a human minigene rescued null mice from prenatal death. Although these low-TF expressing transgenic mice developed to term, they had a significantly shorter life span and exhibited hemorrhage and fibrosis in the heart.Human TF knock-in (TFKI) mice were generated by replacing the first two exons of the mouse (murine) TF (muTF) gene with the huTF complete coding sequence, thus placing it under the control of the endogenous muTF promoter.Expression of huTF in the TFKI mice was similar to muTF in wild-type (wt) mice. The TFKI mice showed no microscopic evidence of spontaneous hemorrhage in the heart, nor cardiac fibrosis at up to 18 months of age. Immunohistochemistry showed that huTF was expressed in cells surrounding blood vessels in TFKI mice. Coagulation activity of brain homogenates from TFKI mice was comparable with that from wt brain. Cardiac hemorrhage similar to that of the low-TF transgenic mice occurred in the TFKI mice when huTF was blocked by a neutralizing anti-huTF monoclonal antibody.We generated a transgenic mouse line that expresses huTF under the control of the endogenous muTF promoter at physiological levels. Our results suggest that huTF can fully reconstitute the murine coagulation system and mediate normal hemostasis.

Keywords

Male, Mice, Knockout, Hemostasis, Myocardium, Antibodies, Monoclonal, Brain, Hemorrhage, Mice, Transgenic, Kidney, Epitopes, Mice, Gene Expression Regulation, Organ Specificity, Immunoglobulin G, Genes, Synthetic, Animals, Humans, Female, Cardiomyopathies, Pericytes

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
32
Top 10%
Top 10%
Top 10%
bronze