Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Plant Journalarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Plant Journal
Article . 2011 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Research.fi
Article . 2020 . Peer-reviewed
Data sources: Research.fi
versions View all 3 versions

Arabidopsis Lateral Root Development 3 is essential for early phloem development and function, and hence for normal root system development

Authors: Paul, Ingram; Jan, Dettmer; Yrjo, Helariutta; Jocelyn E, Malamy;

Arabidopsis Lateral Root Development 3 is essential for early phloem development and function, and hence for normal root system development

Abstract

SummaryWe have identified a gene, Lateral Root Development 3 (LRD3), that is important for maintaining a balance between primary and lateral root growth. The lrd3 mutant has decreased primary root growth and increased lateral root growth. We determined that the LRD3 gene encodes a LIM‐domain protein of unknown function. LRD3 is expressed only in the phloem companion cells, which suggested a role in phloem function. Indeed, while phloem loading and export from the shoot appear to be normal, delivery of phloem to the primary root tip is limited severely in young seedlings. Abnormalities in phloem morphology in these seedlings indicate that LRD3 is essential for correct early phloem development. There is a subsequent spontaneous recovery of normal phloem morphology, which is correlated tightly with increased phloem delivery and growth of the primary root. The LRD3 gene is one of very few genes described to affect phloem development, and the only one that is specific to early phloem development. Continuous growth on auxin also leads to recovery of phloem development and function in lrd3, which demonstrates that auxin plays a key role in early phloem development. The root system architecture and the pattern of phloem allocation in the lrd3 root system suggested that there may be regulated mechanisms for selectively supporting certain lateral roots when the primary root is compromised. Therefore, this study provides new insights into phloem‐mediated resource allocation and its effects on plant root system architecture.

Related Organizations
Keywords

Indoleacetic Acids, Arabidopsis Proteins, Gene Expression Regulation, Plant, Seedlings, Arabidopsis, Cloning, Molecular, Phloem, Plant Roots

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
35
Top 10%
Top 10%
Top 10%