Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biological Reviewsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biological Reviews
Article . 2021 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

Mechanosensing by Piezo1 and its implications for physiology and various pathologies

Authors: Austin Lai; Charles D. Cox; Nadia Chandra Sekar; Peter Thurgood; Anthony Jaworowski; Karlheinz Peter; Sara Baratchi;

Mechanosensing by Piezo1 and its implications for physiology and various pathologies

Abstract

ABSTRACTPiezo1 is a mechanosensitive ion channel with essential roles in cardiovascular, lung, urinary, and immune functions. Piezo1 is widely distributed in different tissues in the human body and its specific roles have been identified following a decade of research; however, not all are well understood. Many structural and functional characteristics of Piezo1 have been discovered and are known to differ greatly from the characteristics of other mechanosensitive ion channels. Understanding the mechanisms by which this ion channel functions may be useful in determining its physiological roles in various organ systems. This review provides insight into the signalling pathways activated by mechanical stimulation of Piezo1 in various organ systems and cell types. We discuss downstream targets of Piezo1 and the overall effects resulting from Piezo1 activation, which may provide insights into potential treatment targets for diseases involving this ion channel.

Keywords

610, Humans, Cardiovascular System, Mechanotransduction, Cellular, Ion Channels, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    115
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
115
Top 1%
Top 10%
Top 1%