Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ British Journal of P...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
British Journal of Pharmacology
Article . 2015 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

Role for engagement of β‐arrestin2 by the transactivated EGFR in agonist‐specific regulation of δ receptor activation of ERK1/2

Authors: Jing-Gen Liu; Chi Xu; Min-Hua Hong; Yu-Jun Wang; Le-Sha Zhang; Yun-Yue Ju; Zhi-Qiang Chi; +2 Authors

Role for engagement of β‐arrestin2 by the transactivated EGFR in agonist‐specific regulation of δ receptor activation of ERK1/2

Abstract

Background and Purposeβ‐Arrestins function as signal transducers linking GPCRs to ERK1/2 signalling either by scaffolding members of ERK1/2s cascades or by transactivating receptor tyrosine kinases through Src‐mediated release of transactivating factor. Recruitment of β‐arrestins to the activated GPCRs is required for ERK1/2 activation. Our previous studies showed that δ receptors activate ERK1/2 through a β‐arrestin‐dependent mechanism without inducing β‐arrestin binding to the δ receptors. However, the precise mechanisms involved remain to be established.Experimental ApproachERK1/2 activation by δ receptor ligands was assessed using HEK293 cellsin vitroand male Sprague Dawley ratsin vivo. Immunoprecipitation, immunoblotting, siRNA transfection, intracerebroventricular injection and immunohistochemistry were used to elucidate the underlying mechanism.Key ResultsWe identified a new signalling pathway in which recruitment of β‐arrestin2 to the EGFR rather than δ receptor was required for its role in δ receptor‐mediated ERK1/2 activation in response to H‐Tyr–Tic–Phe–Phe–OH (TIPP) or morphine stimulation. Stimulation of the δ receptor with ligands leads to the phosphorylation of PKCδ, which acts upstream of EGFR transactivation and is needed for the release of the EGFR‐activating factor, whereas β‐arrestin2 was found to act downstream of the EGFR transactivation. Moreover, we demonstrated that coupling of the PKCδ/EGFR/β‐arrestin2 transactivation pathway to δ receptor‐mediated ERK1/2 activation was ligand‐specific and the Ser363of δ receptors was crucial for ligand‐specific implementation of this ERK1/2 activation pathway.Conclusions and ImplicationsThe δ receptor‐mediated activation of ERK1/2 is via ligand‐specific transactivation of EGFR. This study adds new insights into the mechanism by which δ receptors activate ERK1/2.

Related Organizations
Keywords

Male, Mitogen-Activated Protein Kinase 1, Transcriptional Activation, Mitogen-Activated Protein Kinase 3, Morphine, Arrestins, Analgesics, Opioid, ErbB Receptors, Rats, Sprague-Dawley, Protein Kinase C-delta, HEK293 Cells, Receptors, Opioid, delta, Tetrahydroisoquinolines, Animals, Humans, Oligopeptides, beta-Arrestins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Average
Average
bronze