Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ British Journal of P...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
British Journal of Pharmacology
Article . 2015 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

Cryptotanshinone, an orally bioactive herbal compound from Danshen, attenuates atherosclerosis in apolipoprotein E‐deficient mice: role of lectin‐like oxidized LDL receptor‐1 (LOX‐1)

Authors: Zhiping, Liu; Suowen, Xu; Xiaoyang, Huang; Jiaojiao, Wang; Si, Gao; Hong, Li; Changhua, Zhou; +4 Authors

Cryptotanshinone, an orally bioactive herbal compound from Danshen, attenuates atherosclerosis in apolipoprotein E‐deficient mice: role of lectin‐like oxidized LDL receptor‐1 (LOX‐1)

Abstract

Background and PurposeCryptotanshinone (CTS) is a major bioactive diterpenoid isolated from Danshen, an eminent medicinal herb that is used to treat cardiovascular disorders in Asian medicine. However, it is not known whether CTS can prevent experimental atherosclerosis. The present study was designed to investigate the protective effects of CTS on atherosclerosis and its molecular mechanisms of action.Experimental ApproachApolipoprotein E‐deficient (ApoE−/−) mice, fed an atherogenic diet, were dosed daily with CTS (15, 45 mg kg−1 day−1) by oral gavage. In vitro studies were carried out in oxidized LDL (oxLDL)‐stimulated HUVECs treated with or without CTS.Key ResultsCTS significantly attenuated atherosclerotic plaque formation and enhanced plaque stability in ApoE−/− mice by inhibiting the expression of lectin‐like oxLDL receptor‐1 (LOX‐1) and MMP‐9, as well as inhibiting reactive oxygen species (ROS) generation and NF‐κB activation. CTS treatment significantly decreased the levels of serum pro‐inflammatory mediators without altering the serum lipid profile. In vitro, CTS decreased oxLDL‐induced LOX‐1 mRNA and protein expression and, thereby, inhibited LOX‐1‐mediated adhesion of monocytes to HUVECs, by reducing the expression of adhesion molecules (intracellular adhesion molecule 1 and vascular cellular adhesion molecule 1). Furthermore, CTS inhibited NADPH oxidase subunit 4 (NOX4)‐mediated ROS generation and consequent activation of NF‐κB in HUVECs.Conclusions and ImplicationsCTS was shown to have anti‐atherosclerotic activity, which was mediated through inhibition of the LOX‐1‐mediated signalling pathway. This suggests that CTS is a vasculoprotective drug that has potential therapeutic value for the clinical treatment of atherosclerotic cardiovascular diseases.Linked ArticlesThis article is part of a themed section on Chinese Innovation in Cardiovascular Drug Discovery. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-23

Related Organizations
Keywords

Male, Mice, Knockout, Dose-Response Relationship, Drug, Administration, Oral, Salvia miltiorrhiza, Phenanthrenes, Atherosclerosis, Scavenger Receptors, Class E, Mice, Inbred C57BL, Mice, Structure-Activity Relationship, Apolipoproteins E, Animals, Humans, Female, Reactive Oxygen Species, Cells, Cultured, Drugs, Chinese Herbal, Phytotherapy

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    78
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
78
Top 10%
Top 10%
Top 10%
bronze