Spectral Unmixing via Data-Guided Sparsity
Spectral Unmixing via Data-Guided Sparsity
Hyperspectral unmixing, the process of estimating a common set of spectral bases and their corresponding composite percentages at each pixel, is an important task for hyperspectral analysis, visualization and understanding. From an unsupervised learning perspective, this problem is very challenging---both the spectral bases and their composite percentages are unknown, making the solution space too large. To reduce the solution space, many approaches have been proposed by exploiting various priors. In practice, these priors would easily lead to some unsuitable solution. This is because they are achieved by applying an identical strength of constraints to all the factors, which does not hold in practice. To overcome this limitation, we propose a novel sparsity based method by learning a data-guided map to describe the individual mixed level of each pixel. Through this data-guided map, the $\ell_{p}(0
- Chinese Academy of Science
- Chinese Academy of Sciences (中国科学院) China (People's Republic of)
- Chinese Academy of Science
- Chinese Academy of Science (中国科学院) China (People's Republic of)
- Institute of Automation China (People's Republic of)
FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition
FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition
1 Research products, page 1 of 1
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).204 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
