Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Plant Cellarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Plant Cell
Article . 2009 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Plant Cell
Article
Data sources: UnpayWall
The Plant Cell
Article . 2009
versions View all 2 versions

SHORT HYPOCOTYL UNDER BLUE1 Associates withMINISEED3andHAIKU2Promoters in Vivo to RegulateArabidopsisSeed Development

Authors: Yun, Zhou; Xiaojuan, Zhang; Xiaojun, Kang; Xiangyu, Zhao; Xiansheng, Zhang; Min, Ni;

SHORT HYPOCOTYL UNDER BLUE1 Associates withMINISEED3andHAIKU2Promoters in Vivo to RegulateArabidopsisSeed Development

Abstract

AbstractSeed development in Arabidopsis thaliana undergoes an initial phase of endosperm proliferation followed by a second phase in which the embryo grows at the expense of the endosperm. As mature seed size is largely attained during the initial phase, seed size is coordinately determined by the growth of the maternal ovule, endosperm, and embryo. Here, we identify SHORT HYPOCOTYL UNDER BLUE1 (SHB1) as a positive regulator of Arabidopsis seed development that affects both cell size and cell number. shb1-D, a gain-of-function overexpression allele, increases seed size, and shb1, a loss-of-function allele, reduces seed size. SHB1 is transmitted zygotically. The increase in shb1-D seed size is associated with endosperm cellurization, chalazal endosperm enlargement, and embryo development. SHB1 is required for the proper expression of two other genes that affect endosperm development, MINISEED3 (MINI3) and HAIKU2 (IKU2), a WRKY transcription factor gene and a leucine-rich repeat receptor kinase gene. SHB1 associates with both MINI3 and IKU2 promoters in vivo. SHB1 may act with other proteins that bind to MINI3 and IKU2 promoters to promote a large seed cavity and endosperm growth in the early phase of seed development. In the second phase, SHB1 enhances embryo cell proliferation and expansion through a yet unknown IKU2-independent pathway.

Related Organizations
Keywords

Arabidopsis Proteins, Arabidopsis, Gene Expression Regulation, Developmental, Gene Expression Regulation, Plant, RNA, Plant, Mutation, Seeds, Promoter Regions, Genetic, Protein Kinases, Cell Proliferation, Cell Size, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    185
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
185
Top 1%
Top 10%
Top 10%
hybrid