Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PLANT PHYSIOLOGYarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLANT PHYSIOLOGY
Article . 2004 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLANT PHYSIOLOGY
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLANT PHYSIOLOGY
Article . 2004
versions View all 3 versions

Genomic Analysis of the Nitrate Response Using a Nitrate Reductase-Null Mutant of Arabidopsis

Authors: Wang, R. C.; Tischner, R.; Gutierrez, R. A.; Hoffman, M.; Xing, X. J.; Chen, M. S.; Coruzzi, G.; +1 Authors

Genomic Analysis of the Nitrate Response Using a Nitrate Reductase-Null Mutant of Arabidopsis

Abstract

Abstract A nitrate reductase (NR)-null mutant of Arabidopsis was constructed that had a deletion of the major NR gene NIA2 and an insertion in the NIA1 NR gene. This mutant had no detectable NR activity and could not use nitrate as the sole nitrogen source. Starch mobilization was not induced by nitrate in this mutant but was induced by ammonium, indicating that nitrate was not the signal for this process. Microarray analysis of gene expression revealed that 595 genes responded to nitrate (5 mm nitrate for 2 h) in both wild-type and mutant plants. This group of genes was overrepresented most significantly in the functional categories of energy, metabolism, and glycolysis and gluconeogenesis. Because the nitrate response of these genes was NR independent, nitrate and not a downstream metabolite served as the signal. The microarray analysis also revealed that shoots can be as responsive to nitrate as roots, yet there was substantial organ specificity to the nitrate response.

Keywords

Nitrates, Base Sequence, DNA, Plant, Gene Expression Profiling, Arabidopsis, Nitrate Reductase, Nitrate Reductases, Mutation, Genome, Plant, Oligonucleotide Array Sequence Analysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    408
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
408
Top 1%
Top 1%
Top 1%
Green
hybrid