Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Genome Researcharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genome Research
Article
Data sources: UnpayWall
Genome Research
Article . 2005 . Peer-reviewed
Data sources: Crossref
Genome Research
Article . 2005
versions View all 2 versions

Simultaneous genotyping, gene-expression measurement, and detection of allele-specific expression with oligonucleotide arrays

Authors: James, Ronald; Joshua M, Akey; Jacqueline, Whittle; Erin N, Smith; Gael, Yvert; Leonid, Kruglyak;

Simultaneous genotyping, gene-expression measurement, and detection of allele-specific expression with oligonucleotide arrays

Abstract

Oligonucleotide microarrays provide a high-throughput method for exploring genomes. In addition to their utility for gene-expression analysis, oligonucleotide-expression arrays have also been used to perform genotyping on genomic DNA. Here, we show that in segregants from a cross between two unrelated strains of Saccharomyces cerevisiae , high-quality genotype data can also be obtained when mRNA is hybridized to an oligonucleotide-expression array. We were able to identify and genotype nearly 1000 polymorphisms at an error rate close to 3% in segregants and at an error rate of 7% in diploid strains, a performance comparable to methods using genomic DNA. In addition, we demonstrate how simultaneous genotyping and gene-expression profiling can reveal cis -regulatory variation by screening hundreds of genes for allele-specific expression. With this method, we discovered 70 ORFs with evidence for preferential expression of one allele in a diploid hybrid of two S. cerevisiae strains.

Keywords

Species Specificity, Research Design, Gene Expression Profiling, Gene Expression Regulation, Fungal, Genes, Fungal, Saccharomyces cerevisiae, Genome, Fungal, DNA, Fungal, Alleles, Oligonucleotide Array Sequence Analysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    111
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
111
Top 10%
Top 10%
Top 1%
bronze