Oncogenic ETS fusions deregulate E2F3 target genes in Ewing sarcoma and prostate cancer
Oncogenic ETS fusions deregulate E2F3 target genes in Ewing sarcoma and prostate cancer
Deregulated E2F transcription factor activity occurs in the vast majority of human tumors and has been solidly implicated in disturbances of cell cycle control, proliferation, and apoptosis. Aberrant E2F regulatory activity is often caused by impairment of control through pRB function, but little is known about the interplay of other oncoproteins with E2F. Here we show that ETS transcription factor fusions resulting from disease driving rearrangements in Ewing sarcoma (ES) and prostate cancer (PC) are one such class of oncoproteins. We performed an integrative study of genome-wide DNA-binding and transcription data in EWSR1/FLI1 expressing ES and TMPRSS2/ERG containing PC cells. Supported by promoter activity and mutation analyses, we demonstrate that a large fraction of E2F3 target genes are synergistically coregulated by these aberrant ETS proteins. We propose that the oncogenic effect of ETS fusion oncoproteins is in part mediated by the disruptive effect of the E2F–ETS interaction on cell cycle control. Additionally, a detailed analysis of the regulatory targets of the characteristic EWSR1/FLI1 fusion in ES identifies two functionally distinct gene sets. While synergistic regulation in concert with E2F in the promoter of target genes has a generally activating effect, EWSR1/FLI1 binding independent of E2F3 is predominantly associated with repressed differentiation genes. Thus, EWSR1/FLI1 appears to promote oncogenesis by simultaneously promoting cell proliferation and perturbing differentiation.
- Center for Cancer Research United States
- National Cancer Institute United States
- Medical University of Vienna Austria
- St. Anna Children's Cancer Research Institute Austria
Male, Oncogene Proteins, Fusion, Proto-Oncogene Protein c-fli-1, Research, Cell Cycle, Serine Endopeptidases, Prostatic Neoplasms, Apoptosis, Cell Differentiation, Sarcoma, Ewing, DNA-Binding Proteins, Gene Expression Regulation, Neoplastic, E2F3 Transcription Factor, Cell Line, Tumor, Trans-Activators, Humans, RNA-Binding Protein EWS, Promoter Regions, Genetic, Cell Proliferation, Oligonucleotide Array Sequence Analysis, Protein Binding
Male, Oncogene Proteins, Fusion, Proto-Oncogene Protein c-fli-1, Research, Cell Cycle, Serine Endopeptidases, Prostatic Neoplasms, Apoptosis, Cell Differentiation, Sarcoma, Ewing, DNA-Binding Proteins, Gene Expression Regulation, Neoplastic, E2F3 Transcription Factor, Cell Line, Tumor, Trans-Activators, Humans, RNA-Binding Protein EWS, Promoter Regions, Genetic, Cell Proliferation, Oligonucleotide Array Sequence Analysis, Protein Binding
15 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2018IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).109 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
