Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Genes & Developmentarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genes & Development
Article . 2000 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Discoidin domain receptor 1 functions in axon extension of cerebellar granule neurons

Authors: Yin Fang; Mary E. Hatten; Toshifumi Tomoda; Rupal S. Bhatt;

Discoidin domain receptor 1 functions in axon extension of cerebellar granule neurons

Abstract

In the developing cerebellum, granule neuron axon outgrowth is a key step toward establishing proper connections with Purkinje neurons, the principal output neuron of the cerebellum. During a search for genes that function in this process, we identified a receptor tyrosine kinase discoidin domain receptor 1 (DDR1) expressed in granule cells throughout their development. Overexpression of a dominant-negative form of DDR1 in immature granule cells results in severe reduction of neurite outgrowth in vitro, in dissociated primary culture, and in vivo, in organotypic slices of neonatal cerebellum. Granule cells that fail to extend axons are positive for differentiation markers such as TAG-1 and the neuron-specific class III β-tubulin, suggesting that development is affected after granule cells commit to terminal differentiation. DDR1 activation appears to be mediated by its ligand, collagen, which is localized to the pial layer of the developing cerebellum, thereby leading to granule cell parallel fiber extension. Our results therefore indicate that collagen–DDR1 signaling is essential for granule neuron axon formation and further suggest a unique role of pia in cerebellar cortex histogenesis.

Related Organizations
Keywords

Neurons, Membrane Glycoproteins, Cell Adhesion Molecules, Neuronal, Immunoblotting, Down-Regulation, Gene Expression Regulation, Developmental, Cell Differentiation, Blotting, Northern, Ligands, Axons, Mice, Cerebellum, Contactin 2, Animals, Collagen, Discoidin Domain Receptors, Cell Division, Cells, Cultured, In Situ Hybridization, Genes, Dominant

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    82
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
82
Top 10%
Top 10%
Top 10%
Published in a Diamond OA journal