Smurf2 up-regulation activates telomere-dependent senescence
Smurf2 up-regulation activates telomere-dependent senescence
Progressive telomere shortening activates replicative senescence, which prevents somatic cells from being propagated indefinitely in culture. The limitation of proliferative capacity imposed by replicative senescence is thought to contribute to both organismal aging and the prevention of tumor development. Here we report that up-regulation of Smurf2, an E3 ubiquitin ligase previously implicated in TGF-β signaling, is a specific consequence of telomere attrition in human fibroblasts and that such up-regulation is sufficient to produce the senescence phenotype. Adventitious production of the Smurf2 protein in early passage fibroblasts at the same physiological level observed during telomere-mediated senescence resulted in proliferative arrest in a viable state, morphological and biochemical alterations characteristic of senescence, acquisition of senescence-specific alterations in gene expression, and reversal of cellular immortalization by telomerase. We show that the senescence-inducing actions of Smurf2 occur in the absence of detectable DNA damage or stress response, that Smurf2's effects require a novel function distinct from its E3 activity, that Smurf2 recruits the Rb and p53 pathways for senescence induction, and that while p21 is elevated by Smurf2, Smurf2-mediated senescence is independent of p21. Smurf2 is the first gene found to be both up-regulated by telomere attrition and sufficient to induce senescence.
- Stanford University United States
- University of Massachusetts Medical School United States
Blotting, Reverse Transcriptase Polymerase Chain Reaction, Ubiquitin-Protein Ligases, Blotting, Western, Genetic Vectors, Fluorescent Antibody Technique, Cell Biology, Fibroblasts, Telomere, Blotting, Northern, Retinoblastoma Protein, Cell Line, Up-Regulation, Cell Aging, Humans, Northern, Tumor Suppressor Protein p53, Western, Cellular Senescence, Oligonucleotide Array Sequence Analysis, Plasmids
Blotting, Reverse Transcriptase Polymerase Chain Reaction, Ubiquitin-Protein Ligases, Blotting, Western, Genetic Vectors, Fluorescent Antibody Technique, Cell Biology, Fibroblasts, Telomere, Blotting, Northern, Retinoblastoma Protein, Cell Line, Up-Regulation, Cell Aging, Humans, Northern, Tumor Suppressor Protein p53, Western, Cellular Senescence, Oligonucleotide Array Sequence Analysis, Plasmids
3 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).84 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
