The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development
The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development
MicroRNAs (miRNAs) are endogenous 21–24-nt RNAs that can down-regulate gene expression by pairing to the messages of protein-coding genes to specify mRNA cleavage or repression of productive translation. They act within the RNA-induced silencing complex (RISC), which in animals contains a member of the Argonaute family of proteins. In the present study, we show that Arabidopsis ago1 mutants have increased accumulation of mRNAs known to be targeted for cleavage by miRNAs. In hypomorphic ago1 alleles, this compromised miRNA function occurs without a substantial change in miRNA accumulation, whereas in null alleles it is accompanied by a drop in some of the miRNAs. Therefore, AGO1 acts within the Arabidopsis miRNA pathway, probably within the miRNA-programmed RISC, such that the absence of AGO1 destabilizes some of the miRNAs. We also show that targeting of AGO1 mRNA by miR168 is needed for proper plant development, illustrating the importance of feedback control by this miRNA. Transgenic plants expressing a mutant AGO1 mRNA with decreased complementarity to miR168 overaccumulate AGO1 mRNA and exhibit developmental defects partially overlapping with those of dcl1 , hen1 , and hyl1 mutants showing a decrease in miRNA accumulation. miRNA targets overaccumulate in miR168-resistant plants, suggesting that a large excess of AGO1 protein interferes with the function of RISC or sequesters miRNAs or other RISC components. Developmental defects induced by a miR168-resistant AGO1 mRNA can be rescued by a compensatory miRNA that is complementary to the mutant AGO1 mRNA, proving the regulatory relationship between miR168 and its target and opening the way for engineering artificial miRNAs in plants.
- University of Lille France
- Massachusetts Institute of Technology United States
- National Research Institute for Agriculture, Food and Environment France
- Whitehead Institute for Biomedical Research United States
- Institut Jean-Pierre Bourgin France
Base Sequence, Arabidopsis Proteins, Arabidopsis, Genes, Plant, Plants, Genetically Modified, MicroRNAs, Phenotype, RNA, Plant, Argonaute Proteins, Mutation, Amino Acid Sequence, RNA, Messenger
Base Sequence, Arabidopsis Proteins, Arabidopsis, Genes, Plant, Plants, Genetically Modified, MicroRNAs, Phenotype, RNA, Plant, Argonaute Proteins, Mutation, Amino Acid Sequence, RNA, Messenger
16 Research products, page 1 of 2
- 2021IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2009IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2020IsAmongTopNSimilarDocuments
- 2002IsAmongTopNSimilarDocuments
- 2006IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).847 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 0.1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 0.1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 0.1%
