Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Microbiologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Microbiology
Article
Data sources: UnpayWall
Microbiology
Article . 2005 . Peer-reviewed
Data sources: Crossref
Microbiology
Article . 2005
versions View all 2 versions

Temperature adaptation in Dictyostelium: role of Δ5 fatty acid desaturase

Authors: Saito, Tamao; Kato, Atsushi; Ochiai, Hiroshi; Morita, Naoki;

Temperature adaptation in Dictyostelium: role of Δ5 fatty acid desaturase

Abstract

Membrane fluidity is critical for proper membrane function and is regulated in part by the proportion of unsaturated fatty acids present in membrane lipids. The proportion of these lipids in turn varies with temperature and may contribute to temperature adaptation in poikilothermic organisms. The fundamental question posed in this study was whether the unsaturation of fatty acids contributes to the ability to adapt to temperature stress inDictyostelium. First, fatty acid composition was analysed and it was observed that the relative proportions of dienoic acids changed with temperature. To investigate the role of dienoic fatty acids in temperature adaptation, null mutants were created in the two known Δ5 fatty acid desaturases (FadA and FadB) that are responsible for the production of dienoic fatty acids. ThefadBnull mutant showed no significant alteration in fatty acid composition or in phenotype. However, the disruption offadAresulted in a large drop in dienoic fatty acid content from 51·2 to 4·1 % and a possibly compensatory increase in monoenoic fatty acids (40·9–92·4 %). No difference was detected in temperature adaptation with that of wild-type cells during the growth phase. However, surprisingly, mutant cells developed more efficiently than the wild-type at elevated temperatures. These results show that the fatty acid composition ofDictyosteliumchanges with temperature and suggest that the regulation of dienoic fatty acid synthesis is involved in the development ofDictyosteliumat elevated temperatures, but not during the growth phase.

Country
Japan
Keywords

Fatty Acid Desaturases, Fatty Acids, Temperature, Gene Expression Regulation, Developmental, 464, Adaptation, Physiological, Culture Media, Mutation, Animals, Dictyostelium, Heat-Shock Response

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average
gold