Powered by OpenAIRE graph

Analysis of base excision and nucleotide excision repair in Candida albicans

Authors: Peter A. Jauert; David T. Kirkpatrick; Melanie Legrand; Christine L. Chan;

Analysis of base excision and nucleotide excision repair in Candida albicans

Abstract

Candida albicans, clinically the most important human fungal pathogen, rapidly develops resistance to antifungal drugs. The acquisition of resistance has been linked to various types of genome changes. As part of an ongoing study of this problem, we investigated mutation, genome stability and drug resistance acquisition in C. albicans strains with deletions in the base excision repair (BER) genes NTG1, APN1 and OGG1, and in the nucleotide excision repair (NER) genes RAD2 and RAD10. The BER mutants did not exhibit any change in their susceptibility to DNA-damaging agents, but the NER mutants were extremely sensitive to UV-induced DNA damage. We did not observe any significant change in mutation, genome stability and antifungal drug sensitivity in the mutant strains we tested. However, we detected a number of intriguing phenotypic differences between strains bearing deletions in equivalent C. albicans and Saccharomyces cerevisiae BER and NER genes, which may be related to differences in the life cycles of these two fungi.

Related Organizations
Keywords

Antifungal Agents, DNA Repair, Ultraviolet Rays, Molecular Sequence Data, Sequence Analysis, DNA, DNA Repair Enzymes, Phenotype, Chromosomal Instability, Candida albicans, Mutation, Amino Acid Sequence, Sequence Alignment, Mutagens

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    39
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
39
Top 10%
Top 10%
Top 10%