<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Binary vanadium pentoxide carbon-graphene foam composites derived from dark red hibiscus sabdariffa for advanced asymmetric supercapacitor

pmid: 34510927
Binary vanadium pentoxide carbon-graphene foam composites derived from dark red hibiscus sabdariffa for advanced asymmetric supercapacitor
The development of advanced electrode materials derived from biomass for the next generation of energy storage devices, such as supercapacitors with high specific energy and specific power coupled with a good cycle stability, is required to meet the high demand for electric vehicles and portable devices. In this study, sustainable binary vanadium pentoxide carbon-graphene foam composites (V 2 O 5 @C-R 2 HS/GF) were synthesized using a solvothermal method. The X-ray diffraction, Raman and FTIR techniques were used to study the structural properties of the composites (V 2 O 5 @C-R 2 HS/20 mg GF and V 2 O 5 @C-R 2 HS/40 mg GF). The SEM micrographs displayed an accordion-like morphology resulting from the graphene foam-modified V 2 O 5 @C-R 2 HS composite. The V 2 O 5 @C-R 2 HS, V 2 O 5 @C-R 2 HS/20 mg GF and V 2 O 5 @C-R 2 HS/40 mg GF composites were evaluated in a three-electrode configuration using 6 M potassium hydroxide (KOH) as an aqueous electrolyte. Furthermore, a two-electrode device was carried out by fabricating an asymmetric device (V 2 O 5 @C-R 2 HS/GF//AC) where V 2 O 5 @C-R 2 HS/20 mg GF was used as a positive electrode and activated carbon (AC) as a negative electrode at a cell voltage of 1.6 V in 6 M KOH. The V 2 O 5 @C-R 2 HS/GF//AC showed a high specific energy and specific power values of 55 W h kg −1 and 707 W kg −1 , respectively, at a specific current of 1 A g −1 . The asymmetric device presented a good stability test showing 99% capacity retention up to 10 000 cycles and was confirmed by the floating time up to 150 h with specific energy increasing 23.6% after the first 10 h. This article is part of the theme issue ‘Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 2)’.
- University of Pretoria South Africa
- Cheikh Anta Diop University Senegal
- Institut National de la Recherche Scientifique Canada
3 Research products, page 1 of 1
- 2023IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).5 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average