Inhibitory SMADs: Potential Regulators of Ovarian Function1
Inhibitory SMADs: Potential Regulators of Ovarian Function1
Transforming growth factor beta (TGFB) superfamily signaling regulates essential reproductive functions. Dysregulation of TGFB signaling results in cellular and molecular deficiencies in the ovary, leading to reproductive diseases and cancer development. SMAD proteins are canonical TGFB signaling components consisting of receptor-regulated SMADs (SMAD1/2/3/5/9), a common SMAD (SMAD4), and inhibitory SMADs (SMAD6/7). Inhibitory SMADs are negative regulators of TGFB and bone morphogenetic protein signaling, and their reproductive functions are poorly defined. Emerging evidence supports that inhibitory SMADs are potential regulators of ovarian function. Further efforts and new genetic models are needed to unveil the role of inhibitory SMADs in the ovary.
- Texas A&M University United States
- Texas A&M University United States
- The University of Texas System United States
- Texas A&M University United States
Transforming Growth Factor beta, Ovary, Animals, Female, Smad Proteins, Inhibitory, Receptors, Transforming Growth Factor beta, Signal Transduction
Transforming Growth Factor beta, Ovary, Animals, Female, Smad Proteins, Inhibitory, Receptors, Transforming Growth Factor beta, Signal Transduction
7 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).37 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
