Powered by OpenAIRE graph

Large Scale Isolation and Some Properties of AGY-Specific Serine tRNA from Bovine Heart Mitochondria1

Authors: Takahisa Ohta; Takuya Ueda; Kimitsuna Watanabe;

Large Scale Isolation and Some Properties of AGY-Specific Serine tRNA from Bovine Heart Mitochondria1

Abstract

A method was developed for large scale isolation of AGY-specific serine tRNA (tRNASerAGY) from bovine heart mitochondria. By this method, 5 A260 units of tRNASerAGY were recovered from 6.3 kg of bovine hearts. The nucleotide sequence was identical to that reported previously. tRNASerAGY showed abnormal melting profiles, as was predicted from its unique primary sequence. Its secondary and/or tertiary structure was analyzed by nuclease digestion method. It was suggested that three extra base pairs could occur in the anticodon stem region, with one adenosine residue protruding. The T loop was quite sensitive to nuclease S1, suggesting that the T loop doesn't interact with other regions. This finding is consistent with the model proposed by Sundaralingam (1980). tRNASerAGY was aminoacylated in vitro with only mitochondrial enzyme but not with the enzymes from E. coli and yeast. The aminoacylation rate of tRNASerAGY with mitochondrial enzyme was much faster than that of cytosolic tRNASerUCN, perhaps reflecting differences due to the presence and absence of the D arm of the tRNAs.

Related Organizations
Keywords

Base Sequence, Chemical Phenomena, Chemistry, Physical, Hydrolysis, Temperature, RNA, Transfer, Amino Acyl, Mitochondria, Heart, Cytosol, Animals, Cattle, Electrophoresis, Polyacrylamide Gel, Subcellular Fractions

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    45
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
45
Average
Top 10%
Average