Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nucleic Acids Resear...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nucleic Acids Research
Article . 2018 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nucleic Acids Research
Article
License: CC BY NC
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2018
License: CC BY NC
Data sources: PubMed Central
versions View all 3 versions

Structural accommodations accompanying splicing of a group II intron RNP

Authors: Dong, Xiaolong; Ranganathan, Srivathsan; Qu, Guosheng; Piazza, Carol Lyn; Belfort, Marlene;

Structural accommodations accompanying splicing of a group II intron RNP

Abstract

Group II introns, the putative progenitors of spliceosomal introns and retrotransposons, are ribozymes that are capable of self-splicing and DNA invasion. In the cell, group II introns form ribonucleoprotein (RNP) complexes with an intron-encoded protein, which is essential to folding, splicing and retromobility of the intron. To understand the structural accommodations underlying splicing, in preparation for retromobility, we probed the endogenously expressed Lactococcus lactis Ll.LtrB group II intron RNP using SHAPE. The results, which are consistent in vivo and in vitro, provide insights into the dynamics of the intron RNP as well as RNA-RNA and RNA-protein interactions. By comparing the excised intron RNP with mutant RNPs in the precursor state, confined SHAPE profile differences were observed, indicative of rearrangements at the active site as well as disengagement at the functional RNA-protein interface in transition between the two states. The exon-binding sequences in the intron RNA, which interact with the 5' exon and the target DNA, show increased flexibility after splicing. In contrast, stability of major tertiary and protein interactions maintains the scaffold of the RNA through the splicing transition, while the active site is realigned in preparation for retromobility.

Keywords

Base Sequence, RNA Splicing, Exons, Molecular Dynamics Simulation, Introns, Lactococcus lactis, Bacterial Proteins, Ribonucleoproteins, RNA and RNA-protein complexes, Spliceosomes, Nucleic Acid Conformation, RNA, Catalytic, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Top 10%
Green
gold