Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nucleic Acids Resear...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nucleic Acids Research
Article . 1998 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

A cysteine residue in helixII of the bHLH domain is essential for homodimerization of the yeast transcription factor Pho4p

Authors: D, Shao; C L, Creasy; L W, Bergman;

A cysteine residue in helixII of the bHLH domain is essential for homodimerization of the yeast transcription factor Pho4p

Abstract

The yeast transcription factor Pho4p is required for expression of the phosphate-repressible acid phosphatase encoded by the PHO5 gene. Functional studies have shown that the molecule is composed of an N-terminal acidic activation domain, a central region which is necessary for interaction with a negative regulatory factor (the cyclin Pho80) and a C-terminal basic helix-loop-helix domain, which mediates DNA binding and homodimerization. In this study the homodimerization domain maps specifically to helixII of this region and a cysteine residue within this region is essential for this function. Experiments support the role of an intermolecular disulfide bond in stabilization of homodimerization, which is critical for DNA binding.

Keywords

Models, Molecular, Protein Denaturation, Saccharomyces cerevisiae Proteins, Sequence Homology, Amino Acid, Recombinant Fusion Proteins, Helix-Loop-Helix Motifs, Molecular Sequence Data, Saccharomyces cerevisiae, Protein Structure, Secondary, DNA-Binding Proteins, Fungal Proteins, Proto-Oncogene Proteins c-myc, Mutagenesis, Site-Directed, Amino Acid Sequence, Cysteine, Disulfides, Dimerization, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Average
Average
Average
gold