Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Human Molecular Gene...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
CNR ExploRA
Article . 2004
Data sources: CNR ExploRA
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Article . 2004
Data sources: IRIS Cnr
Human Molecular Genetics
Article . 2004 . Peer-reviewed
Data sources: Crossref
versions View all 5 versions

Molecular analysis of the genetic defect in a large cohort of IP patients and identification of novel NEMO mutations interfering with NF- B activation

Authors: Fusco F; Bardaro T; Fimiani G; Mercadante V; Miano MG; Falco G; Israel A; +3 Authors

Molecular analysis of the genetic defect in a large cohort of IP patients and identification of novel NEMO mutations interfering with NF- B activation

Abstract

Incontinentia Pigmenti (IP) is an X-linked genodermatosis that is lethal for males and present in females with abnormal skin pigmentation and high variable clinical signs, including retinal detachment, anodontia, alopecia, nail dystrophy and nervous system defects. The NF-kappaB essential modulator (NEMO) gene, responsible for IP, encodes the regulatory subunit of the IkappaB kinase (IKK) complex required for nuclear factor kappaB (NF-kappaB) activation. We analyzed the NEMO gene in 122 IP patients and identified mutations in 83 (36 familiar and 47 sporadic cases). The recurrent NEMO exon 4-10 deletion that is the major cause of the disease was present in 73 females (59.8%). In addition 10 point alterations (8.2% of females) were identified: three frameshift, three nonsense, three missense and one in-frame deletion of a single amino acid. We measured the effects of these NEMO point-mutations on NF-kappaB signaling in nemo(-/-) deficient murine pre-B cells. A mutation in the N-terminal domain, required for IKK assembly, reduced but did not abolish NF-kappaB activation following lipopolysaccharide stimulation. Mutations that disrupt the C-terminal domain, required for the recruitment of upstream factors, showed lower or no NF-kappaB activation. A phenotype score based on clinical features of our IP patients was applied for summarizing disease severity. The score did not correlate with mutation type or domain affected indicating that other factors influence the severity of IP. Such a factor is likely to be X-inactivation. Indeed, 64% of our patients have extremely skewed X-inactivation pattern (>/=80 : 20). Overall IP pathogenesis thus depends on a combination of X-inactivation and protein domain that recruit upstream factors and activate NF-kappaB.

Country
Italy
Keywords

Lipopolysaccharides, Blotting, Western, Mice, Dosage Compensation, Genetic, Genetics, Animals, Humans, Immunoprecipitation, Incontinentia Pigmenti, Molecular Biology, Genetics (clinical), Cells, Cultured, Base Sequence, Genetic Complementation Test, NF-kappa B, General Medicine, Exons, I-kappa B Kinase, Pedigree, Gene Components, Phenotype, Mutation, Mutagenesis, Site-Directed, Carrier Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    152
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 3
    download downloads 1
  • 3
    views
    1
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
152
Top 10%
Top 1%
Top 10%
3
1
Green
bronze