Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cerebral Cortexarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cerebral Cortex
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cerebral Cortex
Article . 2005 . Peer-reviewed
Data sources: Crossref
Cerebral Cortex
Article . 2006
versions View all 4 versions

A Mutually Stimulating Loop Involving Emx2 and Canonical Wnt Signalling Specifically Promotes Expansion of Occipital Cortex and Hippocampus

Authors: Muzio, L.; Soria, J. M.; Pannese, M.; Piccolo, S.; Mallamaci, A.;

A Mutually Stimulating Loop Involving Emx2 and Canonical Wnt Signalling Specifically Promotes Expansion of Occipital Cortex and Hippocampus

Abstract

The correct size of the different areas composing the mature cerebral cortex depends on the proper early allocation of cortical progenitors to their distinctive areal fates, as well as on appropriate subsequent tuning of their area-specific proliferation-differentiation profiles. Whereas much is known about the genetics of the former process, the molecular mechanisms regulating proliferation and differentiation rates within distinctive cortical proto-areas are still largely obscure. Here we show that a mutual stimulating loop, involving Emx2 and canonical Wnt signalling, specifically promotes expansion of the occipito-hippocampal anlage. Collapse of this loop occurring in Emx2-/- mutants leads progenitors within this region to slow down DNA synthesis and exit prematurely from the cell cycle, due to misregulation of cell cycle-, proneural- and lateral inhibition-molecular machineries, and eventually results in dramatic and selective size-reduction of occipital cortex and hippocampus. Reactivation of canonical Wnt signalling in the same mutants rescues a subset of molecular abnormalities and corrects differentiation rates of occipito-hippocampal progenitors.

Country
Italy
Keywords

Homeodomain Proteins, Neurons, Stem Cells, Gene Expression Regulation, Developmental, Cell Differentiation, Hippocampus, Mice, Mutant Strains, Wnt Proteins, Mice, Animals, Occipital Lobe, areal sizing; Emx2; Wnt signalling; cell cycle genes; proneural genes, Cell Division, Signal Transduction, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    70
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
70
Top 10%
Top 10%
Top 10%
bronze