A model for pH coupling of the SARS-CoV-2 spike protein open/closed equilibrium
A model for pH coupling of the SARS-CoV-2 spike protein open/closed equilibrium
Abstract Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causative agent of the coronavirus disease 2019 (COVID-19) pandemic, is thought to release its RNA genome at either the cell surface or within endosomes, the balance being dependent on spike protein stability, and the complement of receptors, co-receptors and proteases. To investigate possible mediators of pH-dependence, pKa calculations have been made on a set of structures for spike protein ectodomain and fragments from SARS-CoV-2 and other coronaviruses. Dominating a heat map of the aggregated predictions, three histidine residues in S2 are consistently predicted as destabilizing in pre-fusion (all three) and post-fusion (two of the three) structures. Other predicted features include the more moderate energetics of surface salt–bridge interactions and sidechain–mainchain interactions. Two aspartic acid residues in partially buried salt-bridges (D290–R273 and R355–D398) have pKas that are calculated to be elevated and destabilizing in more open forms of the spike trimer. These aspartic acids are most stabilized in a tightly closed conformation that has been observed when linoleic acid is bound, and which also affects the interactions of D614. The D614G mutation is known to modulate the balance of closed to open trimer. It is suggested that D398 in particular contributes to a pH-dependence of the open/closed equilibrium, potentially coupled to the effects of linoleic acid binding and D614G mutation, and possibly also A570D mutation. These observations are discussed in the context of SARS-CoV-2 infection, mutagenesis studies, and other human coronaviruses.
- University of Salford United Kingdom
- University of Manchester United Kingdom
- SCHOOL OF BIOLOGICAL SCIENCES
Case Study, Sequence Homology, Amino Acid, Protein Conformation, SARS-CoV-2, coronaviruses, Static Electricity, pH-dependence, virus entry, Hydrogen-Ion Concentration, spike protein, Spike Glycoprotein, Coronavirus, protein electrostatics, Humans, Amino Acid Sequence
Case Study, Sequence Homology, Amino Acid, Protein Conformation, SARS-CoV-2, coronaviruses, Static Electricity, pH-dependence, virus entry, Hydrogen-Ion Concentration, spike protein, Spike Glycoprotein, Coronavirus, protein electrostatics, Humans, Amino Acid Sequence
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).21 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
