Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Biology of...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Biology of the Cell
Article . 2008 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Wounding Sheets of Epithelial Cells Activates the Epidermal Growth Factor Receptor through Distinct Short- and Long-Range Mechanisms

Authors: Ethan R, Block; Jes K, Klarlund;

Wounding Sheets of Epithelial Cells Activates the Epidermal Growth Factor Receptor through Distinct Short- and Long-Range Mechanisms

Abstract

Wounding epithelia induces activation of the epidermal growth factor receptor (EGFR), which is absolutely required for induction of motility. ATP is released from cells after wounding; it binds to purinergic receptors on the cell surface, and the EGFR is subsequently activated. Exogenous ATP activates phospholipase D, and we show here that ATP activates the EGFR through the phospholipase D2 isoform. The EGFR is activated in cells far (>0.3 cm) from wounds, which is mediated by diffusion of extracellular ATP because activation at a distance from wounds is abrogated by eliminating ATP in the medium with apyrase. In sharp contrast, activation of the EGFR near wounds is not sensitive to apyrase. Time-lapse microscopy revealed that cells exhibit increased motilities near edges of wounds; this increase in motility is not sensitive to apyrase, and apyrase does not detectably inhibit healing of wounds in epithelial sheets. This novel ATP/PLD2-independent pathway activates the EGFR by a transactivation process through ligand release, and it involves signaling by a member of the Src family of kinases. We conclude that wounding activates two distinct signaling pathways that induce EGFR activation and promote healing of wounds in epithelial cells. One pathway signals at a distance from wounds through release of ATP, and another pathway acts locally and is independent on ATP signaling.

Related Organizations
Keywords

Transcriptional Activation, Wound Healing, Epithelial Cells, Limbus Corneae, Models, Biological, Cell Line, Enzyme Activation, ErbB Receptors, Isoenzymes, Adenosine Triphosphate, src-Family Kinases, Phospholipase D, Humans, Extracellular Signal-Regulated MAP Kinases, Extracellular Space, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    43
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
43
Top 10%
Top 10%
Top 10%
bronze