Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DNA and Cell Biologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DNA and Cell Biology
Article . 1998 . Peer-reviewed
License: Mary Ann Liebert TDM
Data sources: Crossref
versions View all 2 versions

Mouse Nicotinamide N-Methyltransferase Gene: Molecular Cloning, Structural Characterization, and Chromosomal Localization

Authors: L, Yan; D M, Otterness; C A, Kozak; R M, Weinshilboum;

Mouse Nicotinamide N-Methyltransferase Gene: Molecular Cloning, Structural Characterization, and Chromosomal Localization

Abstract

Nicotinamide N-methyltransferase (NNMT) catalyzes the N-methylation of nicotinamide and structurally related compounds. There are large strain-dependent variations in the expression of NNMT activity in mouse liver during growth and development, raising the possibility of developmental regulation of the gene. Therefore, we set out to clone and structurally characterize the mouse NNMT gene, Nnmt. The gene spanned approximately 16 kb and consisted of three exons, 348 bp, 208 bp, and 487 bp in length, with an initial 1228-bp intron and a second intron that was approximately 14 kb in length. The locations of the splice junctions within the gene were highly conserved compared with those in genes for structurally related methyltransferase enzymes. The Nnmt gene contained no canonical TATA box sequences, but an "initiator" (Inr) sequence was located at the site of transcription initiation as determined by 5' rapid amplification of cDNAs ends. A promoter was located within the initial 750 bp of the 5' flanking region of the gene according to studies of the expression of a reporter gene in HepG2 cells. 5'-Flanking region sequences for mouse strains with high and low hepatic NNMT activity differed with regard to a series of nucleotide substitutions, insertions, and deletions, with the most striking difference being a 12-bp insertion/deletion. The Nnmt gene mapped to mouse chromosome 9 in an area of conserved synteny to human chromosome 11q, consistent with the localization of the human NNMT gene to 11q23. Cloning and structural characterization of the mouse Nnmt gene will make it possible to study molecular genetic mechanisms involved in the expression of this important methyltransferase.

Related Organizations
Keywords

Niacinamide, Mice, Inbred C3H, Base Sequence, Sequence Homology, Amino Acid, Molecular Sequence Data, Chromosome Mapping, Methyltransferases, Sequence Analysis, DNA, Methylation, Mice, Inbred C57BL, Mice, Liver, Species Specificity, Nicotinamide N-Methyltransferase, Animals, Amino Acid Sequence, Cloning, Molecular

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Top 10%
Top 10%