Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Bioelectricityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Bioelectricity
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Bioelectricity
Article . 2020 . Peer-reviewed
License: Mary Ann Liebert TDM
Data sources: Crossref
versions View all 3 versions

Biophysical Investigation of Sodium Channel Interaction with β-Subunit Variants Associated with Arrhythmias

Authors: Llongueras, José P; Das, Samir; De Waele, Jolien; Capulzini, Lucio; Sorgente, Antonio; Van Petegem, Filip; Bosmans, Frank;

Biophysical Investigation of Sodium Channel Interaction with β-Subunit Variants Associated with Arrhythmias

Abstract

Background: Voltage-gated sodium (NaV) channels help regulate electrical activity of the plasma membrane. Mutations in associated subunits can result in pathological outcomes. Here we examined the interaction of NaV channels with cardiac arrhythmia-linked mutations in SCN2B and SCN4B, two genes that encode auxiliary β-subunits. Materials and Methods: To investigate changes in SCN2B R137H and SCN4B I80T function, we combined three-dimensional X-ray crystallography with electrophysiological measurements on NaV1.5, the dominant subtype in the heart. Results: SCN4B I80T alters channel activity, whereas SCN2B R137H does not have an apparent effect. Structurally, the SCN4B I80T perturbation alters hydrophobic packing of the subunit with major structural changes and causes a thermal destabilization of the folding. In contrast, SCN2B R137H leads to structural changes but overall protein stability is unaffected. Conclusion: SCN4B I80T data suggest a functionally important region in the interaction between NaV1.5 and β4 that, when disrupted, could lead to channel dysfunction. A lack of apparent functional effects of SCN2B R137H on NaV1.5 suggests an alternative working mechanism, possibly through other NaV channel subtypes present in heart tissue. Indeed, mapping the structural variations of SCN2B R137H onto neuronal NaV channel structures suggests altered interaction patterns.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
bronze