Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Infec...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL UPEC
Article . 2009
Data sources: HAL UPEC
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL-Inserm
Article . 2009
Data sources: HAL-Inserm
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL-CEA
Article . 2009
Data sources: HAL-CEA
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL INRAE
Article . 2009
Data sources: HAL INRAE
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL - CNAM
Article . 2009
Data sources: HAL - CNAM
The Journal of Infectious Diseases
Article . 2009 . Peer-reviewed
Data sources: Crossref
versions View all 9 versions

Genomewide Association Study of a Rapid Progression Cohort Identifies New Susceptibility Alleles for AIDS (ANRS Genomewide Association Study 03)

Authors: Wassila Carpentier; Ivo Gut; Matthieu Montes; Jean-François Delfraissy; Philippe Froguel; Philippe Froguel; François Schächter; +21 Authors

Genomewide Association Study of a Rapid Progression Cohort Identifies New Susceptibility Alleles for AIDS (ANRS Genomewide Association Study 03)

Abstract

Previous genomewide association studies (GWASs) of AIDS have targeted end points based on the control of viral load and disease nonprogression. The discovery of genetic factors that predispose individuals to rapid progression to AIDS should also reveal new insights into the molecular etiology of the pathology.We undertook a case-control GWAS of a unique cohort of 85 human immunodeficiency virus type 1 (HIV-1)-infected patients who experienced rapid disease progression, using Illumina HumanHap300 BeadChips. The case group was compared with a control group of 1352 individuals for the 291,119 autosomal single-nucleotide polymorphisms (SNPs) passing the quality control tests, using the false-discovery rate (FDR) statistical method for multitest correction.Novel associations with rapid progression (FDR, < or = 25%) were identified for PRMT6 (P = 6.1 x 10(-7); odds ratio [OR], 0.24), SOX5 (P = 1.8 x 10(-6); OR, 0.45), RXRG (P = 3.9 x 10(-6); OR, 3.29), and TGFBRAP1 (P = 7 x 10(-6); OR, 0.34). The haplotype analysis identified exonic and promoter SNPs potentially important for PRMT6 and TGFBRAP1 function.The statistical and biological relevance of these associations and their high ORs underscore the power of extreme phenotypes for GWASs, even with a modest sample size. These genetic results emphasize the role of the transforming growth factor beta pathway in the pathogenesis of HIV-1 disease. Finally, the wealth of information provided by this study should help unravel new diagnostic and therapeutic targets.

Keywords

Acquired Immunodeficiency Syndrome, [SDV.MHEP] Life Sciences [q-bio]/Human health and pathology, Genotype, Genome, Human, [SDV]Life Sciences [q-bio], 610, Polymorphism, Single Nucleotide, Linkage Disequilibrium, [SDV] Life Sciences [q-bio], Cohort Studies, Phenotype, Gene Expression Regulation, Case-Control Studies, 616, HIV Seropositivity, Disease Progression, Humans, Genetic Predisposition to Disease, [SDV.MHEP]Life Sciences [q-bio]/Human health and pathology, Alleles

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    96
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
96
Top 10%
Top 10%
Top 1%
bronze