Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Cell ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2005
Data sources: PubMed Central
The Journal of Cell Biology
Article . 2005 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions

Calreticulin signals upstream of calcineurin and MEF2C in a critical Ca2+-dependent signaling cascade

Authors: Lynch, Jeffrey; Guo, Lei; Gelebart, Pascal; Chilibeck, Kaari; Xu, Jian; Molkentin, Jeffery D.; Agellon, Luis B.; +1 Authors

Calreticulin signals upstream of calcineurin and MEF2C in a critical Ca2+-dependent signaling cascade

Abstract

We uncovered a new pathway of interplay between calreticulin and myocyte-enhancer factor (MEF) 2C, a cardiac-specific transcription factor. We establish that calreticulin works upstream of calcineurin and MEF2C in a Ca2+-dependent signal transduction cascade that links the endoplasmic reticulum and the nucleus during cardiac development. In the absence of calreticulin, translocation of MEF2C to the nucleus is compromised. This defect is reversed by calreticulin itself or by a constitutively active form of calcineurin. Furthermore, we show that expression of the calreticulin gene itself is regulated by MEF2C in vitro and in vivo and that, in turn, increased expression of calreticulin affects MEF2C transcriptional activity. The present findings provide a clear molecular explanation for the embryonic lethality observed in calreticulin-deficient mice and emphasize the importance of calreticulin in the early stages of cardiac development. Our study illustrates the existence of a positive feedback mechanism that ensures an adequate supply of releasable Ca2+ is maintained within the cell for activation of calcineurin and, subsequently, for proper functioning of MEF2C.

Keywords

Transcriptional Activation, MEF2 Transcription Factors, Calcineurin, Gene Expression Regulation, Developmental, Heart, MADS Domain Proteins, Endoplasmic Reticulum, Feedback, Mice, Myogenic Regulatory Factors, NIH 3T3 Cells, Animals, Humans, Calcium, Myocytes, Cardiac, Calcium Signaling, Calreticulin, Research Articles

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    76
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
76
Top 10%
Top 10%
Top 10%
Green
bronze