Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2019 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Mitochondria export iron–sulfur and sulfur intermediates to the cytoplasm for iron–sulfur cluster assembly and tRNA thiolation in yeast

Authors: Ashutosh K, Pandey; Jayashree, Pain; Andrew, Dancis; Debkumar, Pain;

Mitochondria export iron–sulfur and sulfur intermediates to the cytoplasm for iron–sulfur cluster assembly and tRNA thiolation in yeast

Abstract

Iron-sulfur clusters are essential cofactors of proteins. In eukaryotes, iron-sulfur cluster biogenesis requires a mitochondrial iron-sulfur cluster machinery (ISC) and a cytoplasmic iron-sulfur protein assembly machinery (CIA). Here we used mitochondria and cytoplasm isolated from yeast cells, and [35S]cysteine to detect cytoplasmic Fe-35S cluster assembly on a purified apoprotein substrate. We showed that mitochondria generate an intermediate, called (Fe-S)int, needed for cytoplasmic iron-sulfur cluster assembly. The mitochondrial biosynthesis of (Fe-S)int required ISC components such as Nfs1 cysteine desulfurase, Isu1/2 scaffold, and Ssq1 chaperone. Mitochondria then exported (Fe-S)int via the Atm1 transporter in the inner membrane, and we detected (Fe-S)int in active form. When (Fe-S)int was added to cytoplasm, CIA utilized it for iron-sulfur cluster assembly without any further help from the mitochondria. We found that both iron and sulfur for cytoplasmic iron-sulfur cluster assembly originate from the mitochondria, revealing a surprising and novel mitochondrial role. Mitochondrial (Fe-S)int export was most efficient in the presence of cytoplasm containing an apoprotein substrate, suggesting that mitochondria respond to the cytoplasmic demand for iron-sulfur cluster synthesis. Of note, the (Fe-S)int is distinct from the sulfur intermediate called Sint, which is also made and exported by mitochondria but is instead used for cytoplasmic tRNA thiolation. In summary, our findings establish a direct and vital role of mitochondria in cytoplasmic iron-sulfur cluster assembly in yeast cells.

Keywords

Iron-Sulfur Proteins, Cytoplasm, Saccharomyces cerevisiae Proteins, Iron, Biological Transport, RNA, Fungal, Saccharomyces cerevisiae, Mitochondrial Proteins, RNA, Transfer, Sulfhydryl Compounds, Sulfur

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    58
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
58
Top 1%
Top 10%
Top 1%
gold