Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2009 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL-Inserm
Article . 2009
Data sources: HAL-Inserm
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions

Catalytic Activity and Inhibition of Wegener Antigen Proteinase 3 on the Cell Surface of Human Polymorphonuclear Neutrophils

Authors: Korkmaz, Brice; Jaillet, Jérôme; Jourdan, Marie-Lise; Gauthier, Alexandre; Gauthier, Francis; Attucci, Sylvie;

Catalytic Activity and Inhibition of Wegener Antigen Proteinase 3 on the Cell Surface of Human Polymorphonuclear Neutrophils

Abstract

Proteinase 3 (Pr3), the main target of anti-neutrophil cytoplasmic antibodies, is a neutrophil serine protease that may be constitutively expressed at the surface of quiescent circulating neutrophils. This raises the question of the simultaneous presence in the circulation of constitutive membrane-bound Pr3 (mPr3) and its plasma inhibitor alpha1-protease inhibitor (alpha1-Pi). We have looked at the fate of constitutive mPr3 at the surface of circulating blood neutrophils and of induced mPr3 on triggered neutrophils. We found significant Pr3 activity at the surface of activated neutrophils but not at the surface of quiescent neutrophils whatever the constitutive expression. This suggests that constitutive mPr3 is enzymatically inactive or its active site is not accessible to the substrate. Supporting this conclusion, we have not been able to demonstrate any interaction between constitutive mPr3 and alpha1-Pi, whereas induced mPr3 is cleared from the cell surface when activated cells are incubated with this inhibitor. But, unlike membrane-bound elastase that is also cleared from the surface of activated cells, mPr3 remained bound to the membrane when inhibited by elafin or by a low molecular weight chloromethyl ketone inhibitor, which shows that it binds more tightly to the neutrophil membrane. mPr3 may thus be present at the surface of circulating neutrophils in an environment replete with alpha1-Pi. The permanent presence of inactive Pr3 at the surface of quiescent neutrophils may explain why Pr3 is a major target of anti-neutrophil cytoplasmic antibodies, whose binding activates neutrophils and triggers inflammation, as in Wegener granulomatosis.

Country
France
Keywords

Neutrophils, Myeloblastin, Cell Membrane, Granulomatosis with Polyangiitis, Neutrophil Activation, Amino Acid Chloromethyl Ketones, Elafin, alpha 1-Antitrypsin, Enzyme Stability, [SDV.MHEP.PSR] Life Sciences [q-bio]/Human health and pathology/Pulmonology and respiratory tract, Humans, Leukocyte Elastase, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
35
Top 10%
Top 10%
Top 10%
Green
gold