Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2009 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Human Flap Endonuclease I Is in Complex with Telomerase and Is Required for Telomerase-mediated Telomere Maintenance

Authors: Sampathi, Shilpa; Bhusari, Amruta; Shen, Binghui; Chai, Weihang;

Human Flap Endonuclease I Is in Complex with Telomerase and Is Required for Telomerase-mediated Telomere Maintenance

Abstract

Studies from budding yeast and ciliates have suggested that telomerase extension of telomeres requires the conventional DNA replication machinery, yet little is known about how DNA replication proteins regulate telomerase action in higher eukaryotic cells. Here we investigate the role of one of the DNA replication factors, flap endonuclease I (FEN1), in regulating telomerase activity in mammalian cells. FEN1 is a nuclease that plays an important role in DNA replication, repair, and recombination. We show that FEN1 is in complex with telomerase in vivo via telomeric DNA. We further demonstrate that FEN1 deficiency in mouse embryonic fibroblasts leads to an increase in telomere end-to-end fusions. In cancer cells, FEN1 deficiency induces gradual shortening of telomeres but does not alter the single-stranded G-overhangs. This is, to our knowledge, the first evidence that FEN1 and telomerase physically co-exist as a complex and that FEN1 can regulate telomerase activity at telomeres in mammalian cells.

Keywords

DNA Replication, Recombination, Genetic, 570, DNA Repair, Flap Endonucleases, and Chromosome Dynamics, 610, DNA, Telomere, Recombination, Mice, Multienzyme Complexes, Animals, Humans, Telomerase, Repair, HeLa Cells

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Top 10%
Top 10%
Top 10%
gold
Related to Research communities
Cancer Research