Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2007 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Nucleobindin 1 Controls the Unfolded Protein Response by Inhibiting ATF6 Activation

Authors: Yoshinori, Tsukumo; Akihiro, Tomida; Osamu, Kitahara; Yusuke, Nakamura; Shinichi, Asada; Kazutoshi, Mori; Takashi, Tsuruo;

Nucleobindin 1 Controls the Unfolded Protein Response by Inhibiting ATF6 Activation

Abstract

In response to endoplasmic reticulum (ER) stress, activating transcription factor 6 (ATF6), an ER membrane-anchored transcription factor, is transported to the Golgi apparatus and cleaved by site-1 protease (S1P) to activate the unfolded protein response (UPR). Here, we identified nucleobindin 1 (NUCB1) as a novel repressor of the S1P-mediated ATF6 activation. NUCB1 is an ER stress-inducible gene with the promoter region having functional cis-elements for transcriptional activation by ATF6. Overexpression of NUCB1 inhibits S1P-mediated ATF6 cleavage without affecting ER-to-Golgi transport of ATF6, whereas knock-down of NUCB1 by siRNA accelerates ATF6 cleavage during ER stress. NUCB1 protein localizes in the Golgi apparatus, and disruption of the Golgi localization results in loss of the ATF6-inhibitiory activity. Consistent with these observations, NUCB1 can suppress physical interaction of S1P-ATF6 during ER stress. Together, our results demonstrate that NUCB1 is the first-identified, Golgi-localized negative feedback regulator in the ATF6-mediated branch of the UPR.

Keywords

Protein Denaturation, Protein Folding, Base Sequence, Calcium-Binding Proteins, Molecular Sequence Data, Golgi Apparatus, Nerve Tissue Proteins, Endoplasmic Reticulum, Activating Transcription Factor 6, Protein Structure, Tertiary, DNA-Binding Proteins, Microscopy, Fluorescence, Cell Line, Tumor, Humans, Nucleobindins, RNA Interference, RNA, Small Interfering, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    71
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
71
Top 10%
Top 10%
Top 10%
gold