Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2008 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Pyruvate Dehydrogenase Complex Deficiency Caused by Ubiquitination and Proteasome-mediated Degradation of the E1β Subunit

Authors: Zongchao, Han; Li, Zhong; Arun, Srivastava; Peter W, Stacpoole;

Pyruvate Dehydrogenase Complex Deficiency Caused by Ubiquitination and Proteasome-mediated Degradation of the E1β Subunit

Abstract

Congenital deficiencies of the human pyruvate dehydrogenase (PDH) complex are considered to be due to loss of function mutations in one of the component enzymes. Here we describe a case of PDH deficiency associated with the PDH E1beta subunit (PDHB) gene. The clinical phenotype of the patient was consistent with reported cases of PDH deficiency. Cultured skin fibroblasts demonstrated a 55% reduction in PDH activity and markedly decreased immunoreactivity for PDHB protein, compared with healthy controls. Surprisingly, nucleotide sequence analyses of cDNAs corresponding to the patient PDH E1alpha (PDHA1) and PDHB genes revealed no pathological mutations. Moreover, the relative expression level of PDHB mRNA and the rates of transcription and translation of the PDHB gene were normal. However, PDC activity could be restored in cells from this patient following treatment with MG132, a specific proteasome inhibitor, and normal levels of E1beta could be detected in MG132-treated cells. Similar results were obtained following treatment with Tyr-phostin 23 (Tyr23), a specific inhibitor of epidermal growth factor receptor-protein-tyrosine kinase (EGFR-PTK), which also restored E1beta protein levels to those in cells from healthy subjects or from patients with PDHA1 deficiency. The index patient's cells contained a high basal level of EGFR-PTK activity that correlated with the high level of ubiquitination of cellular proteins, although the total EGFR protein levels were similar to those in cells from Elalpha-deficient subjects and healthy subjects. These data indicate that PDH deficiency in our patient involves a post-translational modification in which EGFR-PTK-mediated tyrosine phosphorylation of the E1beta protein leads to enhanced ubiquitination followed by proteasome-mediated degradation. They also provide a novel mechanism accounting for congenital deficiency of the PDH complex and perhaps other inborn errors of metabolism.

Related Organizations
Keywords

Proteasome Endopeptidase Complex, Leupeptins, Blotting, Western, Ubiquitination, Fibroblasts, Models, Biological, ErbB Receptors, Child, Preschool, Mutation, Humans, Immunoprecipitation, Female, Pyruvate Dehydrogenase (Lipoamide), Phosphorylation, Child, Proteasome Inhibitors, Pyruvate Dehydrogenase Complex Deficiency Disease, Cells, Cultured

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    31
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
31
Top 10%
Top 10%
Top 10%
gold