Biochemical and Genetic Studies of UBR3, a Ubiquitin Ligase with a Function in Olfactory and Other Sensory Systems
pmid: 17462990
Biochemical and Genetic Studies of UBR3, a Ubiquitin Ligase with a Function in Olfactory and Other Sensory Systems
Our previous work identified E3 ubiquitin ligases, termed UBR1-UBR7, that contain the approximately 70-residue UBR box, a motif important for the targeting of N-end rule substrates. In this pathway, specific N-terminal residues of substrates are recognized as degradation signals by UBR box-containing E3s that include UBR1, UBR2, UBR4, and UBR5. The other E3s of this set, UBR3, UBR6, and UBR7, remained uncharacterized. Here we describe the cloning and analyses of mouse UBR3. The similarities of UBR3 to the UBR1 and UBR2 E3s of the N-end rule pathway include the RING and UBR domains. We show that HR6A and HR6B, the E2 enzymes that bind to UBR1 and UBR2, also interact with UBR3. However, in contrast to UBR1 and UBR2, UBR3 does not recognize N-end rule substrates. We also constructed UBR3-lacking mouse strains. In the 129SvImJ background, UBR3-/- mice died during embryogenesis, whereas the C57BL/6 background UBR3-/- mice exhibited neonatal lethality and suckling impairment that could be partially rescued by litter size reduction. The adult UBR3-/- mice had female-specific behavioral anosmia. Cells of the olfactory pathway were found to express beta-galactosidase (LacZ) that marked the deletion/disruption UBR3- allele. The UBR3-specific LacZ expression was also prominent in cells of the touch, vision, hearing, and taste systems, suggesting a regulatory role of UBR3 in sensory pathways, including olfaction. By analogy with functions of the UBR domain in the N-end rule pathway, we propose that the UBR box of UBR3 may recognize small compounds that modulate the targeting, by this E3, of its currently unknown substrates.
- University of Pittsburgh United States
- California Institute of Technology United States
- Institut für Pharmakologie und Toxikologie der Bundeswehr Germany
- Charité - University Medicine Berlin Germany
570, Ubiquitin-Protein Ligases, Molecular Sequence Data, Mice, Transgenic, beta-Galactosidase, Models, Biological, Protein Structure, Tertiary, Mice, Inbred C57BL, Smell, Mice, Animals, Tissue Distribution, Amino Acid Sequence, Cloning, Molecular, Alleles, Glutathione Transferase
570, Ubiquitin-Protein Ligases, Molecular Sequence Data, Mice, Transgenic, beta-Galactosidase, Models, Biological, Protein Structure, Tertiary, Mice, Inbred C57BL, Smell, Mice, Animals, Tissue Distribution, Amino Acid Sequence, Cloning, Molecular, Alleles, Glutathione Transferase
31 Research products, page 1 of 4
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2018IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).40 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
