Phorbol Esters Induce Intracellular Accumulation of the Anti-apoptotic Protein PED/PEA-15 by Preventing Ubiquitinylation and Proteasomal Degradation
Phorbol Esters Induce Intracellular Accumulation of the Anti-apoptotic Protein PED/PEA-15 by Preventing Ubiquitinylation and Proteasomal Degradation
Phosphoprotein enriched in diabetes/phosphoprotein enriched in astrocytes (PED/PEA)-15 is an anti-apoptotic protein whose expression is increased in several cancer cells and following experimental skin carcinogenesis. Exposure of untransfected C5N keratinocytes and transfected HEK293 cells to phorbol esters (12-O-tetradecanoylphorbol-13-acetate (TPA)) increased PED/PEA-15 cellular content and enhanced its phosphorylation at serine 116 in a time-dependent fashion. Ser-116 --> Gly (PED(S116G)) but not Ser-104 --> Gly (PED(S104G)) substitution almost completely abolished TPA regulation of PED/PEA-15 expression. TPA effect was also prevented by antisense inhibition of protein kinase C (PKC)-zeta and by the expression of a dominant-negative PKC-zeta mutant cDNA in HEK293 cells. Similar to long term TPA treatment, overexpression of wild-type PKC-zeta increased cellular content and phosphorylation of WT-PED/PEA-15 and PED(S104G) but not of PED(S116G). These events were accompanied by the activation of Ca2+-calmodulin kinase (CaMK) II and prevented by the CaMK blocker, KN-93. At variance, the proteasome inhibitor lactacystin mimicked TPA action on PED/PEA-15 intracellular accumulation and reverted the effects of PKC-zeta and CaMK inhibition. Moreover, we show that PED/PEA-15 bound ubiquitin in intact cells. PED/PEA-15 ubiquitinylation was reduced by TPA and PKC-zeta overexpression and increased by KN-93 and PKC-zeta block. Furthermore, in HEK293 cells expressing PED(S116G), TPA failed to prevent ubiquitin-dependent degradation of the protein. Accordingly, in the same cells, TPA-mediated protection from apoptosis was blunted. Taken together, our results indicate that TPA increases PED/PEA-15 expression at the post-translational level by inducing phosphorylation at serine 116 and preventing ubiquitinylation and proteosomal degradation.
Benzylamines, Proteasome Endopeptidase Complex, Biochemistry, Phorbol Esters, Humans, Phosphorylation, Molecular Biology, Protein Kinase Inhibitors, Protein Kinase C, Aurora Universities Network, Sulfonamides, Ubiquitin, Intracellular Signaling Peptides and Proteins, Cell Biology, Phosphoproteins, Gene Expression Regulation, Calcium-Calmodulin-Dependent Protein Kinases, Tetradecanoylphorbol Acetate, Calcium, Apoptosis Regulatory Proteins, Calcium-Calmodulin-Dependent Protein Kinase Type 2, Protein Processing, Post-Translational, Protein Binding
Benzylamines, Proteasome Endopeptidase Complex, Biochemistry, Phorbol Esters, Humans, Phosphorylation, Molecular Biology, Protein Kinase Inhibitors, Protein Kinase C, Aurora Universities Network, Sulfonamides, Ubiquitin, Intracellular Signaling Peptides and Proteins, Cell Biology, Phosphoproteins, Gene Expression Regulation, Calcium-Calmodulin-Dependent Protein Kinases, Tetradecanoylphorbol Acetate, Calcium, Apoptosis Regulatory Proteins, Calcium-Calmodulin-Dependent Protein Kinase Type 2, Protein Processing, Post-Translational, Protein Binding
10 Research products, page 1 of 1
- 2021IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2012IsAmongTopNSimilarDocuments
- 2005IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).25 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
