Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2006 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2006 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions

Phospholipid Hydroxyalkenals, a Subset of Recently Discovered Endogenous CD36 Ligands, Spontaneously Generate Novel Furan-containing Phospholipids Lacking CD36 Binding Activityin Vivo

Authors: Shengqiang, Gao; Renliang, Zhang; Michael E, Greenberg; Mingjiang, Sun; Xi, Chen; Bruce S, Levison; Robert G, Salomon; +1 Authors

Phospholipid Hydroxyalkenals, a Subset of Recently Discovered Endogenous CD36 Ligands, Spontaneously Generate Novel Furan-containing Phospholipids Lacking CD36 Binding Activityin Vivo

Abstract

We recently identified a novel family of oxidized choline glycerophospholipid (oxPC) molecular species enriched in atheroma that serve as endogenous ligands for the scavenger receptor CD36 (oxPC(CD36)), facilitating macrophage cholesterol accumulation and foam cell formation (Podrez, E. A., Poliakov, E., Shen, Z., et al. (2002) J. Biol. Chem. 277, 38517-38523). A high affinity CD36 recognition motif was defined within oxPC(CD36), an oxidatively truncated sn-2 acyl group with a terminal gamma-hydroxy (or oxo)-alpha,beta-unsaturated carbonyl. The fate of these species once formed in vivo is unknown. Here we show that a subset of oxPC(CD36), a phosphatidylcholine molecular species possessing sn-2 esterified fatty acyl hydroxyalkenal groups, can undergo a slow intramolecular cyclization and dehydration reaction to form novel oxPC species possessing a sn-2 acyl group that incorporates a terminal furyl moiety (oxPC-furan). Using high performance liquid chromatography with on-line tandem mass spectrometry in combination with unambiguous organic synthesis, we confirm that oxPC-furans, ultimately derived from phospholipids with sn-2 esterified docosahexaenoic, arachidonic, or linoleic acids, are formed during exposure of model membranes and isolated lipoproteins to physiological oxidant systems. In vivo generation of oxPC-furans at sites of enhanced oxidant stress is also demonstrated, such as within brain tissues following cerebral ischemia. Cell binding studies reveal that in contrast to their oxPC(CD36) precursors, oxPC-furans lack CD36 binding activity. Taken together, the present studies identify oxPC-furans as a novel family of oxidized phospholipids that are formed in vivo from phospholipid hydroxyalkenals but that lack CD36 binding activity.

Related Organizations
Keywords

CD36 Antigens, Aldehydes, Macrophages, Fatty Acids, Brain, Ligands, Brain Ischemia, Cholesterol, Phagocytosis, Phosphatidylcholines, Humans, Furans, Foam Cells

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
32
Average
Top 10%
Top 10%
gold