Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ YUHSpace (Yonsei Uni...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2005 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Protein Kinase C Phosphorylation of the Metabotropic Glutamate ReceptormGluR5 on Serine 839 Regulates Ca2+Oscillations

Authors: Chul Hoon, Kim; Stephanie, Braud; John T R, Isaac; Katherine W, Roche;

Protein Kinase C Phosphorylation of the Metabotropic Glutamate ReceptormGluR5 on Serine 839 Regulates Ca2+Oscillations

Abstract

The activation of Group 1 metabotropic glutamate receptors, mGluR5 and mGluR1alpha, triggers intracellular calcium release; however, mGluR5 activation is unique in that it elicits Ca2+ oscillations. A short region of the mGluR5 C terminus is the critical determinant and differs from the analogous region of mGluR1alpha by a single amino acid residue, Thr-840, which is an aspartic acid (Asp-854) in mGluR1alpha. Previous studies show that mGluR5-elicited Ca2+ oscillations require protein kinase C (PKC)-dependent phosphorylation and identify Thr-840 as the phosphorylation site. However, direct phosphorylation of mGluR5 has not been studied in detail. We have used biochemical analyses to directly investigate the phosphorylation of the mGluR5 C terminus. We showed that Ser-839 on mGluR5 is directly phosphorylated by PKC, whereas Thr-840 plays a permissive role. Although Ser-839 is conserved in mGluR1alpha (Ser-853), it is not phosphorylated, as the adjacent residue (Asp-854) is not permissive; however, mutagenesis of Asp-854 to a permissive alanine residue allows phosphorylation of Ser-853 on mGluR1alpha. We investigated the physiological consequences of mGluR5 Ser-839 phosphorylation using Ca2+ imaging. Mutations that eliminate Ser-839 phosphorylation prevent the characteristic mGluR5-dependent Ca2+ oscillations. However, mutation of Thr-840 to alanine, which prevents potential Thr-840 phosphorylation but is still permissive for Ser-839 phosphorylation, has no effect on Ca2+ oscillations. Thus, we showed that it is phosphorylation of Ser-839, not Thr-840, that is absolutely required for the unique Ca2+ oscillations produced by mGluR5 activation. The Thr-840 residue is important only in that it is permissive for the PKC-dependent phosphorylation of Ser-839.

Keywords

570, Receptor, Metabotropic Glutamate 5, Molecular Sequence Data, 610, Receptors, Metabotropic Glutamate, Antibodies, Metabotropic Glutamate/metabolism*, Serine/immunology, Receptors, Serine, Site-Directed, Animals, Humans, Amino Acid Sequence, Calcium Signaling, Phosphorylation, Protein Kinase C, Serine/metabolism, Metabotropic Glutamate/immunology, Metabotropic Glutamate 5, Protein Kinase C/metabolism*, Metabotropic Glutamate/genetics, Calcium Signaling/physiology*, Mutagenesis, 15894802, Mutagenesis, Site-Directed, Rabbits, Receptor, HeLa Cells

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    75
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
75
Top 10%
Top 10%
Top 10%
Green
gold