Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2005 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Crystal Structure of CD14 and Its Implications for Lipopolysaccharide Signaling

Authors: Kim, JI; Lee, CJ; Jin, MS; Lee, CH; Paik, SG; Lee, H; Lee, JO Lee, Jie-Oh;

Crystal Structure of CD14 and Its Implications for Lipopolysaccharide Signaling

Abstract

Lipopolysaccharide, the endotoxin of Gram-negative bacteria, induces extensive immune responses that can lead to fatal septic shock syndrome. The core receptors recognizing lipopolysaccharide are CD14, TLR4, and MD-2. CD14 binds to lipopolysaccharide and presents it to the TLR4/MD-2 complex, which initiates intracellular signaling. In addition to lipopolysaccharide, CD14 is capable of recognizing a few other microbial and cellular products. Here, we present the first crystal structure of CD14 to 2.5 angstroms resolution. A large hydrophobic pocket was found on the NH2-terminal side of the horseshoe-like structure. Previously identified regions involved in lipopolysaccharide binding map to the rim and bottom of the pocket indicating that the pocket is the main component of the lipopolysaccharide-binding site. Mutations that interfere with lipopolysaccharide signaling but not with lipopolysaccharide binding are also clustered in a separate area near the pocket. Ligand diversity of CD14 could be explained by the generous size of the pocket, the considerable flexibility of the rim of the pocket, and the multiplicity of grooves available for ligand binding.

Keywords

Lipopolysaccharides, BACTERIAL PEPTIDOGLYCAN, LPS, Molecular Sequence Data, Lipopolysaccharide Receptors, Lymphocyte Antigen 96, PROTEIN, Receptors, Cell Surface, Protein Structure, Secondary, ACTIVATION, Mice, BINDING, Animals, Antigens, Ly, Amino Acid Sequence, RECEPTOR, IDENTIFICATION, RECOGNITION, 540, Toll-Like Receptor 4, MICE, ENDOTOXIN, Hydrophobic and Hydrophilic Interactions, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    220
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
220
Top 1%
Top 1%
Top 1%
gold