Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2004 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

A Novel Human Cl- Channel Family Related to Drosophila flightless Locus

Authors: Atsuko Mizuno; Makoto Suzuki;

A Novel Human Cl- Channel Family Related to Drosophila flightless Locus

Abstract

Large conductance chloride (maxi-Cl(-)) currents have been recorded in some cells, but there is still little information on the molecular nature of the channel underlying this conductance. We report here that tweety, a gene located in Drosophila flightless, has a structure similar to those of known channels and that human homologues of tweety (hTTYH1-3) are novel maxi-Cl(-) channels. hTTYH3 mRNA was found to be distributed in excitable tissues. The whole cell current of hTTYH3 was large enough to be discriminated from the control but emerged only after treatment with ionomycin. Analysis of pore mutants suggested that positively charged amino acids contributed to anion selectivity. Like a maxi-Cl(-) channel in situ, the hTTYH3 single channel showed 26-picosiemen linear current voltage, complex kinetics, 4,4'-diisothiocyanato-stilbene-2,2'-disulfonic acid sensitivity, subconductance, and the permeability order of I(-) > Br(-) > Cl(-). Similarly, hTTYH2 encoded an ionomycin-induced maxi-Cl(-) channel, but TTYH1 encoded a Ca(2+)-independent and swelling-activated maxi-Cl(-) channel. Therefore, the hTTYH family encoded maxi-Cl(-) channels of mammals. Further studies on the hTTYH family should lead to the elucidation of physiological and pathophysiological roles of novel Cl(-) channel molecules.

Keywords

Anions, DNA, Complementary, Ionomycin, Membrane Proteins, CHO Cells, Immunohistochemistry, Cell Line, Electrophysiology, Kinetics, Chloride Channels, Cricetinae, Animals, Drosophila Proteins, Humans, Calcium, Drosophila, Amino Acid Sequence, Amino Acids, Gelsolin, Chelating Agents

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    132
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
132
Top 10%
Top 10%
Top 10%
gold