Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2004 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Histidine 167 Is the Phosphate Acceptor in Glucose-6-phosphatase-β Forming a Phosphohistidine Enzyme Intermediate during Catalysis

Authors: Abhijit, Ghosh; Jeng-Jer, Shieh; Chi-Jiunn, Pan; Janice Yang, Chou;

Histidine 167 Is the Phosphate Acceptor in Glucose-6-phosphatase-β Forming a Phosphohistidine Enzyme Intermediate during Catalysis

Abstract

The glucose-6-phosphatase (Glc-6-Pase) family comprises two active endoplasmic reticulum (ER)-associated isozymes: the liver/kidney/intestine Glc-6-Pase-alpha and the ubiquitous Glc-6-Pase-beta. Both share similar kinetic properties. Sequence alignments predict the two proteins are structurally similar. During glucose 6-phosphate (Glc-6-P) hydrolysis, Glc-6-Pase-alpha, a nine-transmembrane domain protein, forms a covalently bound phosphoryl enzyme intermediate through His(176), which lies on the lumenal side of the ER membrane. We showed that Glc-6-Pase-beta is also a nine-transmembrane domain protein that forms a covalently bound phosphoryl enzyme intermediate during Glc-6-P hydrolysis. However, the intermediate was not detectable in Glc-6-Pase-beta active site mutants R79A, H114A, and H167A. Using [(32)P]Glc-6-P coupled with cyanogen bromide mapping, we demonstrated that the phosphate acceptor in Glc-6-Pase-beta is His(167) and that it lies inside the ER lumen with the active site residues, Arg(79) and His(114). Therefore Glc-6-Pase-alpha and Glc-6-Pase-beta share a similar active site structure, topology, and mechanism of action.

Related Organizations
Keywords

Binding Sites, Hydrolysis, Blotting, Western, Cell Membrane, Molecular Sequence Data, Endoplasmic Reticulum, Catalysis, Adenoviridae, Epitopes, Kinetics, Glucose, Microsomes, COS Cells, Glucose-6-Phosphatase, Animals, Humans, Histidine, Amino Acid Sequence, Cyanogen Bromide, Isoelectric Focusing

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    49
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
49
Top 10%
Top 10%
Top 10%
gold